Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The investigations deal with mass transfer in simulated biomedical systems. The modification of classical diffusion chamber, sequential unit (SU) system, imitated different biomedical setups, boundary conditions. The experiments simulated: diffusion chamber (also with two barriers), transport through the membrane to the blood stream, transport from the stent eluting drug simultaneously to the vessel cells and to the blood stream. The concentrations of substances and the relative mass increases/decreases for SU systems indicate that the order of the curves follows the order of mass transfer resistances. The strong dependence of mass transfer rates versus type of diffusing substance was confirmed. The calculated drug fluxes, diffusion coefficients, permeation coefficients are convergent with literature. Permeation coefficients for complex sequential systems can be estimated as parallel connexion of constituent coefficients. Experiments approved functionality of the SU for investigations in a simulated biomedical system. Obtained data were used for numerical verification.

Go to article

Authors and Affiliations

Anna Adach
Natalia Kister
Andrzej Skassa
Aleksandra Bugalska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an algorithm that monitors the power system to detect and classify power quality events in real time is presented. The algorithm is able to detect events caused by waveform distortions and variations of the RMS values of the voltage. Detection of the RMS events is done by comparing the RMS values with certain thresholds, while detection of waveform distortions is made using an algorithm based on multiharmonic leasts-squares fitting.

Go to article

Authors and Affiliations

Andrei Ardeleanu
Pedro Ramos
Download PDF Download RIS Download Bibtex

Abstract

In situ monitoring of the thickness of thin diamond films during technological processes is important because it allows better control of deposition time and deeper understanding of deposition kinetics. One of the widely used techniques is laser reflectance interferometry (LRI) which enables non-contact measurement during CVD deposition. The authors have built a novel LRI system with a 405 nm laser diode which achieves better resolution compared to the systems based on He-Ne lasers, as reported so far. The system was used for in situ monitoring of thin, microcrystalline diamond films deposited on silicon substrate in PA-CVD processes. The thickness of each film was measured by stylus profilometry and spectral reflectance analysis as a reference. The system setup and interferometric signal processing are also presented for evaluating the system parameters, i.e. measurement uncertainty, resolution and the range of measurable film thickness.

Go to article

Authors and Affiliations

Maciej Kraszewski
Robert Bogdanowicz

This page uses 'cookies'. Learn more