Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Authors and Affiliations

S. Puzio
J. Kamińska
K. Major-Gabryś
M. Angrecki
M. Hosadyna-Kondracka
Download PDF Download RIS Download Bibtex

Abstract

Based on the analysis of a number of studies, it was found that to assess the state of the environment (including surface waters and soils) it is advisable to use indicators of microbiological pollution, which in general integrally reflect the state of the ecosystem. To assess the dynamics of changes in the pollution of the studied areas, a comparison of monitoring data with the corresponding level of pollution in protected areas (Vyzhnytsia National Nature Park) was used. Research methods included soil and surface water sampling, inoculation on appropriate nutrient selective media, counting of colony forming units (CFU) and other microbiological indicators. To assess the biological activity of soils, urease activity was determined by a method generally accepted in biochemistry. It is established that within the protected areas, despite some existing annual fluctuations, the relative stability of the studied indicators of the hydrosphere is preserved. Studies have shown that soils of anthropogenically altered landscapes are characterised by a high content of sanitary-indicative bacteria. As our research shows, according to the colony forming units (CFU), total microbial count, and titer of Escherichia coli, the soils selected in the protected area of the Vyzhnytsia National Nature Park correspond to the “pure” level. The soils of the territories out of the National Nature Park are characterised by high biological capacity, as evidenced by the level of activity of the enzyme urease and the ratio of the main forms of nitrogen compounds.
Go to article

Authors and Affiliations

Andrij Masikevych
1
ORCID: ORCID
Yurij Masikevych
2
ORCID: ORCID
Myroslav S. Malovanyу
3
ORCID: ORCID
Mykola Blyzniuk
4
ORCID: ORCID

  1. Bukovinian State Medical University, Department of Hygiene and Ecology, Chernivtsi, Ukraine
  2. Bukovinian State Medical University, Department of Physiology, Chernivtsi, Ukraine
  3. Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, S. Bandera St, 12, 79013, Lviv, Ukraine
  4. Poltava V.G. Korolenko National Pedagogical University, Department of Production and Information Technologies and Life Safety, Poltava, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Dissimilar Al/Ti alloy sheets were lap welded with ultrasonic assistance in this work. The influence of ultrasonic vibration on formation, intermetallic compounds (IMCs) and tensile failure load of the obtained joints was discussed. The results showed that voids formed at the lap interface without ultrasonic assistance. No voids can be observed on the joint welded with ultrasonic because the vibration during welding improved the material flow. No obvious IMC formed at the Al/Ti bonding interface of the joint welded without ultrasonic assistance. An IMC layer formed at the bonding interface of Al/Ti with ultrasonic assistance and its thickness increased with decreasing the welding speed. The failure load of the joint welded with ultrasonic assistance was higher than the joint without ultrasonic because the void was eliminated and the thin IMC layer formed at the bonding interface was beneficial to joint strength. All joints presented shear failure mode during the tensile shear tests.
Go to article

Authors and Affiliations

Zhibo Dong
1
Ziao Zhang
2
Wei Hu
2
Peng Gong
2
ORCID: ORCID
Zan Lv
2

  1. Harbin Institute of Technology, State Key Laboratory of Advanced Welding and Joining, Harbin 150001, China
  2. Shenyang Aerospace University, School of Aerospace Engineering, Shenyang 110136, China
Download PDF Download RIS Download Bibtex

Abstract

Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 oC with NaCl-KCl-Na3AlF6 salt flux.

Go to article

Authors and Affiliations

P. Palimąka
Download PDF Download RIS Download Bibtex

Abstract

Phase shift interferometry (PSI) derived from interference technique as greater surface characterization technique based on the interference information recorded during a controlled phase shift. This research shows the development of micro/nano structures using phase shift interferometry. (PSI) is the process of developing the complex pattern structure using variable phase angle between two or more beams aligned to obtain functional aperiodic arrays. We have designed and modelled the PSI and simulated through MATLAB in 2D and 3D pattern structures. The PSI was performed in two process analysis. First, without PSI referring normal interference technique. Second, with PSI referring position of laser beams in quadrant-based alignment. The obtained results show the minimum feature structure was measured as 12 nm. This feature size developed under phase shift interferometry (PSI) produces minimum feature size compared to the existing interferometry technique. This study gives the promising increased fabrication area could develop large area arrays structures.
Go to article

Authors and Affiliations

Pearly Princess. J
1
A. Alfred Kirubaraj
1
S. Christina Sophia
1
S. Senith
1
S.R. Jino Ramson
2

  1. Karunya Institute of Technology and Sciences, Karunya Nagar, India
  2. VIT Bhopal University, Bhopal, India
Download PDF Download RIS Download Bibtex

Abstract

Aurivillius Bi5-xHoxTi3FeO15 (BHTFO) multiferroic ceramics with different holmium doping contents were synthesized by conventional solid state reaction. The effect of holmium doping on the microstructure, structural and dielectric behaviors of BHTFO ceramics were investigated in details. Microstructure and crystalline structure studies of ceramics were carried out at room temperature while dielectric properties were investigated in a wide range of temperature (T = 25ºC-550ºC) and frequency (20Hz-1MHz).

Go to article

Authors and Affiliations

M. Tomaszewska
J. Dzik
ORCID: ORCID
B. Wodecka-Duś
ORCID: ORCID
T. Pikula
ORCID: ORCID
M. Adamczyk-Habrajska
ORCID: ORCID
D. Szalbot
ORCID: ORCID
D. Chocyk
Download PDF Download RIS Download Bibtex

Abstract

The Buschke–Löwenstein tumor is a rare disease associated with human papillomavirus infec-tion. The condition manifests with an ulcerative, exophytic tumor localized in the perineal area. Generally considered as non-cancerous, the growth may develop malignant transformation. Our manuscript high-lights the importance of early diagnosis with histopathological analysis.
Go to article

Authors and Affiliations

Grzegorz J. Stępień
1
ORCID: ORCID
Jakub Włodarczyk
1
ORCID: ORCID
Marcin Włodarczyk
1
Łukasz Dziki
1

  1. Department of General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Accurate determination of material parameters, such as carrier lifetimes and defect activation energy, is a significant problem in the technology of infrared detectors. Among many different techniques, using the time resolved photoluminescence spectroscopy allows to determine the narrow energy gap materials, as well as their time dynamics. In this technique, it is possible to observe time dynamics of all processes in the measured sample as in a streak camera. In this article, the signal processing for the above technique for Hg(1-x)CdxTe with a composition x of about 0.3 which plays an extremely important role in the mid-infrared is presented. Machine learning algorithms based on the independent components analysis were used to determine components of the analyzed data series. Two different filtering techniques were investigated. In the article, it is shown how to reduce noise using the independent components analysis and what are the advantages, as well as disadvantages, of selected methods of the independent components analysis filtering. The proposed method might allow to distinguish, based on the analysis of photoluminescence spectra, the location of typical defect levels in HgCdTe described in the literature.
Go to article

Bibliography

  1. Kopytko, M. et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electron. Rev. 21, 402–405 (2013). https://doi.org/10.2478/s11772-013-0101-y
  2. Kopytko, M., Kebłowski, A., Gawron, W. & Madejczyk, P. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors. Opto-Electron. Rev. 23, 143–148 (2015). https://doi.org/10.1515/oere-2015-0017
  3. Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/R01
  4. Bhan, R. K. & Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infra-red focal plane arrays and their characterization. Opto-Electron. Rev. 27, 174–193 (2019). https://doi.org/10.1016/j.opelre.2019.04.004
  5. Izhnin, I. et al. Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs. Opto-Electron. Rev. 21, 390–394 (2013). https://doi.org/10.2478/s11772-013-0103-9
  6. Madejczyk, P. et al. Control of acceptor doping in MOCVD HgCdTe epilayers. Opto-Electron. Rev. 18, 271–276 (2010). https://doi.org/10.2478/s11772-010-1023-x
  7. Martyniuk, P., Koźniewski, A., Kebłowski, A., Gawron, W. & Rogalski, A. MOCVD grown MWIR HgCdTe detectors for high operation temperature conditions. Opto-Electron. Rev. 22, 118–126 (2014). https://doi.org/10.2478/s11772-014-0186-y
  8. Piotrowski, J. et al. Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev. 18, 318–327 (2010). https://doi.org/10.2478/s11772-010-1022-y
  9. Wang, H., Hong, J., Yue, F., Jing, C. & Chu, J. Optical homogeneity analysis of Hg1−xCdxTe epitaxial layers: How to circumvent the influence of impurity absorption bands? Infrared Phys. Technol. 82, 1–7 (2017). https://doi.org/10.1016/j.infrared.2017.02.007
  10. Yue, F., Wu, J. & Chu, J. Deep/shallow levels in arsenic-doped HgCdTe determined by modulated photoluminescence spectra. Appl. Phys. Lett. 93, 131909 (2008). https://doi.org/10.1063/1.2983655
  11. Yue, F. Y. et al. Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications. Chin. Phys. B 28, 17104 (2019). https://doi.org/10.1088/1674-1056/28/1/017104
  12. Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430 (2000). https://doi.org/10.1016/S0893-6080(00)00026-5
  13. Grodecki, K. et al. Enhanced Raman spectra of hydrogen-intercalated quasi-free-standing monolayer graphene on 4H-SiC(0001). Physica E 117, 113746 (2020). https://doi.org/10.1016/j.physe.2019.113746
  14. Grodecki, K. & Murawski, K. New data analysis method for time-resolved infrared photoluminescence spectroscopy. Appl. Spectrosc. 75, 596-599 (2020). https://doi.org/10.1177/0003702820969700
  15. Hong-Yan, L., Zhao, Q. H., Ren, G. L. & Xiao, B. J. Speech enhancement algorithm based on independent component analysis. in 5th Int. Conf. on Natural Computation (ICNC 2009) 2, 598–602 (2009). https://doi.org/10.1109/ICNC.2009.76
  16. Wen, S. & Ding, D. FASTICA-based firefighters speech noise reduction. in Proc. 2015 of 8th Int. Congress on Image and Signal Processing (CISP 2015) 1423–1426 (2016). https://doi.org/10.1109/CISP.2015.7408106
  17. Yue, F. Y. et al. Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications. Chin. Phys. B 28, 17104–017104 (2019). https://doi.org/10.1088/1674-1056/28/1/017104
  18. Zhang, X. et al. Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K. J. Appl. Phys. 110, 043503 (2011). https://doi.org/10.1063/1.3622588
Go to article

Authors and Affiliations

Kacper Grodecki
1
ORCID: ORCID
Krzysztof Murawski
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Andrzej Kowalewski
1
ORCID: ORCID
Jan Sobieski
1
ORCID: ORCID

  1. Military University of Technology, 2 Kaliskiego St., Warsaw 00-908, Poland

This page uses 'cookies'. Learn more