Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Over the last decades the method of proper orthogonal decomposition (POD) has been successfully employed for reduced order modelling (ROM) in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC). Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.

Go to article

Authors and Affiliations

Katarzyna Bizon
Download PDF Download RIS Download Bibtex

Abstract

Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.

Go to article

Authors and Affiliations

Katarzyna Bizon
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the dynamic behaviour of a porous, isothermal catalyst pellet in which a simultaneous chemical reaction, diffusion and adsorption take place. The impact of the reactant adsorption onto the pellet dynamics was evaluated. A linear isotherm and a non-linear Freundlich isotherm were considered. Responses of the pellet to sinusoidal variations of the reactant concentration in a bulk gas were examined. It was demonstrated that the dynamics of the pellet is significantly affected both by accounting for the adsorption and by the frequency of the bulk concentration variations. The sorption phenomenon causes damping of the concentration oscillations inside the pellet and damping of its effectiveness factor oscillations. Depending on the frequency of the concentration oscillations in the bulk, the remarkable oscillations can involve an entire volume of the pellet or its portion in the vicinity of the external surface.

Go to article

Authors and Affiliations

Katarzyna Bizon
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

The study examines various approaches oriented towards conceptual and numerical reduction of first-principle models, data-driven methodologies for surrogate (black box) and hybrid (grey box) modeling, and addresses the prospect of using digital twins in chemical and process engineering. In the case of numerical reduction of mechanistic models, special attention is paid to methodologies in which simulation data are used to construct light but robust numerical models while preserving all the physics of the problem, yielding reduced-order datadriven but still white-box models. In addition to reviewing various methodologies and identifying their applications in chemical engineering, including industrial process engineering, as well as fundamental research, the study outlines associated problems and challenges, as well as the risks posed by the era of big data.
Go to article

Authors and Affiliations

Katarzyna Bizon
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology,Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study addresses two groups of issues occurring in modeling and experimental studies of multicomponent nonisobaric diffusion in macroporous materials. The dynamics of such processes is described in terms of systems of nonlinear partial differential equations. A method of orthogonal collocation for resolving the equations is proposed and compared with the method of lines. The second group of problems presented involves numerical simulations of diffusion in aWicke–Kallenbach diffusion cell. Such an apparatus is used in experimental studies. Particular attention is paid to diffusion in a cell closed from both sides. This is an analogue of the Duncan–Toor experiment. The effect of the number of diffusing components and their initial concentrations on the dynamics of diffusion in binary and ternary solution was studied. Hitherto unknown dynamic properties of such processes were detected and discussed.
Go to article

Bibliography

Arnold K.R., Toor H.L., 1967. Unsteady diffusion in ternary gas mixtures. AIChE J., 13, 909–914. DOI: 10.1002/aic.690130518.
Arnošt D., Schneider P., 1995. Dynamic transport of multicomponent mixtures of gases in porous solids. Chem. Eng. J., 57, 91–99. DOI: 10.1016/0923-0467(94)02900-8.
Boron D., 2020. Izobaryczna metoda stacjonarna wyznaczania współczynników dyfuzji w materiałach porowatych. Przem. Chem., 99, 785–788. DOI: 10.15199/62.2020.5.21.
Boron D., Tabis B., 2020. Udział i znaczenie przepływu lepkiego w nieizobarycznej dyfuzji gazów przez materiały porowate. Przem. Chem., 99, 1717–1716. DOI: 10.15199/62.2020.12.4.
Duncan J.B., Toor H.L., 1962. An experimental study of three component gas diffusion. AIChE J., 8, 38–41. DOI: 10.1002/aic.690080112.
Finlayson B.A., 1972. The method of weighted residuals and variational principles. Academic Press, New York. DOI: 10.1137/1.9781611973242.
Gear C.W., 1971. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, New Jersey.
Ho C.K., Webb S.W. (Eds.), 2006. Gas transport in porous media. Springer, Netherlands. DOI: 10.1007/1-4020-3962-X.
Krishna R., Wesseling J.A., 1997. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci., 52, 861–911. DOI: 10.1016/S0009-2509(96)00458-7.
Mason E.A., Malinauskas A.P., 1983. Gas transport in porous media: The dusty gas model. Elsevier, Amsterdam.
Remick R.R., Geankoplis C.J., 1970. Numerical study of three-component gaseous diffusion equations in transition region between Knudsen and molecular diffusion. Ind. Eng. Chem. Fundam., 9, 206–210. DOI: 10.1021/i160034a003.
Remick R.R., Geankoplis C.J., 1974. Ternary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Chem. Eng. Sci., 29, 1447–1455. DOI: 10.1016/0009-2509(74)80169-7.
Schiesser W.E., 1991. Numerical methods of lines integration of partial differential equations. Academic Press, San Diego.
Tabis B., Bizon K. 2020. Opracowanie metody linii do całkowania dynamiki dyfuzji wieloskładnikowej w materiałach makroporowatych. Prace Katedry Inzynierii Chemicznej i Procesowej Politechniki Krakowskiej.
Tabis B., Bizon K., 2018. Dyfuzyjny ruch masy. Dyfuzja w gazach doskonałych i płynach rzeczywistych. Wydawnictwa Politechniki Krakowskiej, Kraków.
Tabis B., Boron D., 2020. Application of the dusty gas model for determining structural parameters of porous media. Przem. Chem., 99, 888–891. DOI: 10.15199/62.2020.6.11.
Tuchlenski A., Uchytil P., Seidel-Morgenstern A., 1998. An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci., 140, 165–184. DOI: 10.1016/S0376-7388(97)00270-6.
Veldsink J.W., Versteeg G.F., van SwaaijW.M.P., 1994. An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes. J. Membr. Sci., 92, 275–291. DOI: 10.1016/0376-7388(94)00087-5.
Yang J., Cermáková J., Uchytil P., Hamel C., Seidel-Morgenstern A., 2005. Gas phase transport, adsorption and surface diffusion in a porous glass membrane. Catal. Today, 104, 344–351. DOI: 10.1016/j.cattod.2005.03.069.
Go to article

Authors and Affiliations

Katarzyna Bizon
1
ORCID: ORCID
Bolesław Tabiś
1

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The development of efficient carbon dioxide sequestration and utilization technologies is an indispensable aspect of a wide range of measures directed at reducing the negative effects of anthropogenic emissions on the environment. One route is its capture via physical adsorption and further conversion to methane in the Sabatier reaction. The sorption process can be carried out, among others, in fixed-bed adsorptive reactors, in which the packing is made up of adsorbent and catalyst particles. Proper structuring of such a hybrid bed can contribute to increasing the efficiency of both stages of the process. Of importance in this regard is, first of all, the proper management of heat transfer. This study examines the sorption step of the operation of an adsorptive reactor for CO2 sequestration and methanation using a one-dimensional non-isothermal model of a layered fixed bed. Numerical calculations for different configurations and different volume adsorbent to catalyst ratios were carried out to determine how the hybrid structure of the bed and the atypical thermal waves it induces affect the sorption process. The results obtained prove that proper tailoring of the bed can be an excellent tool to control the temperature profiles and thus the performance of the apparatus and possibly its optimization.
Go to article

Authors and Affiliations

Marcin Gunia
1
ORCID: ORCID
Julia Ciećko
1
ORCID: ORCID
Katarzyna Bizon
1
ORCID: ORCID

  1. Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more