Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2Fe14B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2Fe14B phase tend to align to c-axis.

Go to article

Authors and Affiliations

Ju-Young Cho
Sardar Farhat Abbas
Yong-Ho Choa
Taek-Soo Kim
Download PDF Download RIS Download Bibtex

Abstract

To form the fine micro-structures, the Pr17Fe78B5 magnet powders were produced in the optimized gas atomization conditions and it was investigated that the formation of the textures, microstructures, and the changes in the magnetic properties with increasing the deformation temperatures and rolling directions. Due to the rapid cooling system than the casting process, the homogenous microstructures were composed of the Pr-rich and Pr2Fe14B without any oxides and α-Fe and enables grain refinement. The pore ratios were 2.87, 1.42, and 0.22% at the deformation temperatures of 600, 700, 800°C, respectively in the rolled samples to align the c-axis which is the magnetic easy axis. Because Pr-rich phase cannot flow into the pore with a liquid state at low temperature, the improvement of pore densification was gradually observed with increasing deformation temperature. To confirm the magnetic decoupling effects of Pr2Fe14B phases by Pr-rich phases, the magnetic properties were investigated in rolled samples produced at the deformation temperature of 800°C. Although the remanent field is slightly decreased by 30%, the coercivity fields increased by about 2 times than that previous casted ingot. It is suggested that the gas atomization method can be suitable for fabricating grain refined and pure PrFeB magnets, and the plastic deformation conditions and rolling directions are a critical role to manipulate microstructure and magnetic properties.
Go to article

Bibliography

[1] S.G. Yoon, Transfer, Super Strong Permanent Magnets, 1, UUP, Ulsan (1999).
[2] J.G. Lee, J.H. Yu, Ceramist 17 (3), 50-60 (2014).
[3] H .Y. Yasuda, M. Kumano, T. Nagase, R. Kato, H. Shimizu, Scripta Mater. 65 (8), 743-746 (2011).
[4] J.Y. Cho, S.F. Abbas, Y.H. Choa, T.S. Kim, Arch. Metall. Mater. 64 (2), 623-626 (2019).
[5] J.Y. Cho, Y.H. Choa, S. W. Nam, R. M. Zarar ,T. S. Kim, Arch. Metall. Mater. 65 (4), 1293-1296 (2020).
[6] J.H. Lee, J.Y. Cho, S.W. Nam, S.F. Abbas, K.M. Lim, T.S. Kim, Sci. Adv. Mater. 9 (10), 1859-1862 (2017).
[7] K . Akioka, O. Kobayashi, T. Yamagami, A. Arai, T. Shimoda, J. Appl. Phys. 69, 5829-5831 (1991).
[8] A.G. Popov, D.V. Gunderov, T.Z. Puzanova, G.I. Raab, Phys. Met. Metall. 103 (1), 51-57 (2007).
[9] M. Ferrante, E. Freitas, V. Sinka, Mater. Sci. Technol. 15, 501-509 (1999).
[10] H .W. Kwon, P. Bowen, I.R. Harris, J. Alloys Compd. 189, 131-137 (1992).
[11] N. Cifitci, N. Ellendt, G. Coulthard, E.S. Barreto, L. Madler, V. Uhlenwinkel, Metall. Mater. Trans. B 50, 666-677 (2019).
[12] N. Takahashi, H. Nakamura, C.R. Paik, S. Sugimoto, M. Okada, M. Homma, Mater. Trans. 32 (1), 90-92 (1991).
[13] Y. Luo, N. Zhang, proc. 10th Int. Workshop on Rare Earth Magnets and Their Application, Kyoto, 275 (1989).
Go to article

Authors and Affiliations

Ju-Young Cho
1 2
ORCID: ORCID
Myung-Suk Song
1
ORCID: ORCID
Yong-Ho Choa
2
ORCID: ORCID
Taek-Soo Kim
1 3
ORCID: ORCID

  1. Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, 156 Gaetbeol-ro (Songdo-dong), Yeonsu-Gu, Incheon 21999, Korea
  2. Hanyang University, Department of Material Science and Chemical Engineering, Ansan 15588, Korea
  3. University of Science and Technology, Critical Materials and Semi-Conductor Packaging Engineering, Daejeon 3413, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Recently, since the demand of rare earth permanent magnet for high temperature applications such as an electric motor has increased, dysprosium (Dy), a heavy rare earth element, is becoming important due to severe bias in its production. To fulfill the increasing need of Dy, recycling offers as a promising alternative. In recycling of rare earths, Hydro-metallurgical extraction method is mainly used however it has adverse environmental effects. Liquid metal extraction on the other hand, is an eco-friendly and simple method as far as the reduction of rare earth metal oxide is concerned. Therefore, liquid metal extraction was studied in this research as an alternative to the hydro-metallurgical recycling method. Magnesium (Mg) is selected as solvent metal because it doesn’t form intermetallic compounds with Fe, B and has a low melting and low boiling point. Extraction behavior of Dy in (Nd,Dy)-Fe-B magnet is observed and effect of Mg ratio on extraction of Dy is confirmed.

Go to article

Authors and Affiliations

Sangmin Park
Sun-Woo Nam
ORCID: ORCID
Ju-Young Cho
ORCID: ORCID
Sang-Hoon Lee
ORCID: ORCID
Seung-Keun Hyun
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Go to article

Authors and Affiliations

Ju-Young Cho
ORCID: ORCID
Yong-Ho Choa
ORCID: ORCID
Sun-Woo Nam
ORCID: ORCID
Rasheed Mohammad Zarar
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Liquid Metal Extraction process using molten Mg was carried out to obtain Nd-Mg alloys from Nd based permanent magnets at 900oC for 24 h. with a magnet to magnesium mass ratio of 1:10. Nd was successfully extracted from magnet into Mg resulting in ~4 wt.% Nd-Mg alloy. Nd was recovered from the obtained Nd-Mg alloys based on the difference in their vapor pressures using vacuum distillation. Vacuum distillation experiments were carried out at 800oC under vacuum of 2.67 Pa at various times for the recovery of high purity Nd. Nd having a purity of more than 99% was recovered at distillation time of 120 min and above. The phase transformations of the Nd-Mg alloy during the process, from Mg12Nd to α-Nd, were confirmed as per the phase diagram at different distillation times. Pure Nd was recovered as a result of two step recycling process; Liquid Metal Extraction followed by Vacuum Distillation.
Go to article

Bibliography

[1] J.D. Widmer, R. Martin, M. Kimiabeigi, SM&T. 3, 7-13 (2015).
[2] S . Kruse, K. Raulf, T. Pretz, B. Friedrich, J. Sustain. Metall. 3, 168-178 (2017).
[3] N. Haque, A. Hughes, S. Lim, C. Vernon, Resources. 3 (4), 614- 635 (2014).
[4] D . Schüler, M. Buchert, R. Liu, S. Dittrich, C. Merz, Study on Rare Earths and Their Recycling Final Report for the Greens/European Free Alliance Group in the European Parliament, Germany 2011.
[5] Saleem H. Ali, Resources 3, 123-134 (2014).
[6] T.H. Okabe, Trans. Inst. Min. Metall. 126 (1-2), 22-32 (2016).
[7] K . Halada, J. Mater. Cycles Waste Manag. 20 (2), 49-58 (2009).
[8] T.H. Okabe, O. Takeda, K. Fukuda, Y. Umetsu, Mater. Trans. 44 (4), 798-801 (2003).
[9] Y. Xu, L.S. Chumbley, F.C. Laabs, J. Mater. Res. 15 (11), 2296- 2304 (2000).
[10] H .J. Chae, Y.D. Kim, B.S. Kim, J.G. Kim, T.S. Kim, J. Alloys Compd. 586 (s1), 143-149 (2014).
[11] T. Akahori, Y. Miyamoto, T. Saeki, M. Okamoto, T.H. Okabe, J. Alloys Compd. 703, 337-343 (2017).
[12] S . Delfino, A. Saccone, R. Ferro, Metall. Trans. A. 21A, 2109-2114 (1990).
[13] A.A. Nayeb-Hashemi, J.B. Clark, Phase Diagrams of Binary Manganese Alloys, ASM International, Ohio (1988).
[14] [H. Okamoto, J. Phase Equilib. 12, 249 (1991).
[15] S . Gorssea, C.R. Hutchinsonb, B. Chevaliera, J.F. Nieb, J. Alloys Compd. 392, 253-262 (2005).
[16] I . Barin, Thermochemical Data of Pure Substances, Germany (1989).
Go to article

Authors and Affiliations

Mohammad Zarar Rasheed
1 2
ORCID: ORCID
Sun-Woo Nam
2
ORCID: ORCID
Sang-Hoon Lee
2
ORCID: ORCID
Sang-Min Park
2
ORCID: ORCID
Ju-Young Cho
2
ORCID: ORCID
Taek-Soo Kim
1 2
ORCID: ORCID

  1. University of Science and Technology, Industrial Technology, Daejeon, Republic of Korea
  2. Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Republic of Korea

This page uses 'cookies'. Learn more