Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Growing emission requirements are forcing the foundry industry to seek new, more environmentally friendly solutions. One of the

solutions may be the technologies of preparing moulding and core sands using organic biodegradable materials

as binders. However, not only environmental requirements grow but also those related to the technological properties

of moulding sand. Advancing automation and mechanization of the foundry industry brings new challenges related to the moulding sands.

Low elasticity may cause defects during assembly of cores or moulds by the manipulators.

The paper presents the study of flexibility in the room temperature according to new method and resistance to thermal deformation of selfhardening

moulding sands with furfuryl resin, containing biodegradable material PCL. The task of the new additive is to reduce the

moulding sands harmfulness to the environment and increase its flexibility in the room temperature. The impact of the additive and the

effect of the amount of binder on the properties of mentioned moulding sands were analysed. Studies have shown that the use of 5% of

PCL does not change the nature of the thermal deformation curve, improves the bending strength of tested moulding mixtures and

increases their flexibility at room temperature.

Go to article

Authors and Affiliations

A. Grabarczyk
K. Major-Gabryś
St.M. Dobosz
Download PDF Download RIS Download Bibtex

Abstract

The article shows the influence of environment requirements on changes in different foundry moulding sands technologies such as cold

box, self-hardening moulding sands and green sands. The aim of the article is to show the possibility of using the biodegradable materials

as binders (or parts of binders’ compositions) for foundry moulding and core sands. The authors concentrated on the possibility of

preparing new binders consisting of typical synthetic resins - commonly used in foundry practice - and biodegradable materials. According

to own research it is presumed that using biodegradable materials as a part of new binders’ compositions may cause not only lower toxicity

and better ability to reclaim, but may also accelerate the biodegradation rate of used binders. What’s more, using some kinds of

biodegradable materials may improve flexibility of moulding sands with polymeric binder. The conducted research was introductory and

took into account bending strength and thermal properties of furan moulding sands with biodegradable material (PCL). The research

proved that new biodegradable additive did not decrease the tested properties.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new

parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and

deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be

characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry

processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws,

caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high

resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this

property, presents methods of measuring and continues earlier research.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

A cast iron is gradient material. This means that depending on the cooling rate it is possible, at the same chemical composition and the physicochemical state of molten metal, to obtain material with a different structure. The connection between the wall thickness of the casting and the speed of its cooling expresses the casting module. Along with the module escalation a cooling rate of the casting is reducing what can cause changes of the microstructure and the increased tendency to the crystallization of distorted graphite forms. Inspections of experimental castings from nodular cast iron with different modules were conducted to the graphite form.

Go to article

Authors and Affiliations

M. Hosadyna
St.M. Dobosz
J. Kusiński
Download PDF Download RIS Download Bibtex

Abstract

Due to the presence of harmful substances in resins those mould sands may be hazardous to the natural environment and workers. The general assessment of harmfulness of sands used for molds and cores encompasses 2 basic points: emission of hazardous substances during processes of preparing sands, pouring mold with liquid metals (high temperatures), cooling and shaking-out; possibility of washing out hazardous substances from used sands to the environment, during storage or economic use outside foundries. We present the results of research on the emission of BTEX compounds from mould sands with phenolic resins during pouring liquid metal of different temperature (cast iron and Al alloy). The research was conducted according to the original method prepared by the authors, which has been used for years in cooperation with various foundries (Poland, abroad).
Go to article

Authors and Affiliations

St.M. Dobosz
J. Jakubski
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

Modern techniques of castings production, including moulding sands production, require a strict technological regime and high quality

materials. In the case of self-hardening moulding sands with synthetic binders those requirements apply mainly to sand, which adds to

more than 98% of the whole moulding sand mixture. The factors that affect the quality of the moulding sands are both chemical (SiO2

,

Fe2O3 and carbonates content) and physical. Among these factors somewhat less attention is paid to the granulometric composition of the

sands. As a part of this study, the effect of sand quality on bending strength Rgu

and thermal deformation of self-hardening moulding sands

with furfural and alkyd resin was assessed. Moulding sands with furfural resin are known [1] to be the most susceptible to the sand quality.

A negative effect on its properties has, among others, high content of clay binder and so-called subgrains (fraction smaller than 0,1mm),

which can lead to neutralization of acidic hardeners (in the case of moulding sands with furfuryl resin) and also increase the specific

surface, what forces greater amount of binding agents. The research used 5 different quartz sands originating from different sources and

characterized with different grain composition and different clay binder content.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
J. Jakubski
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry

practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested

materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show

if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials

characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

Go to article

Authors and Affiliations

St.M. Dobosz
J. Jakubski
K. Major-Gabryś
D. Drożyński
Download PDF Download RIS Download Bibtex

Abstract

Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.
Go to article

Authors and Affiliations

St.M. Dobosz
J. Jakubski
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
J. Kusiński
Download PDF Download RIS Download Bibtex

Abstract

The article takes into consideration the researches concerning inserting the Glassex additive to the microwaved-hardened and selfhardened moulding sands with water glass. In the research different types of ester hardeners to self-hardened moulding sands with water glass were used. The influence of Glassex additive on retained strength of moulding sands with different hardeners and prepared by different technologies of hardening were tested. The influence of different hardeners and the technology of hardening on retained strength of moulding sand with water glass and the Glassex additive were also estimated.

Go to article

Authors and Affiliations

J. Jakubski
K. Major-Gabryś
M. Stachowicz
St.M. Dobosz
D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic

This page uses 'cookies'. Learn more