Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar b and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial.

Go to article

Authors and Affiliations

A. Zaszczyńska
P.Ł. Sajkiewicz
A. Gradys
R. Tymkiewicz
O. Urbanek
D. Kołbuk
Download PDF Download RIS Download Bibtex

Abstract

Shape memory polymers (SMP) are new multifunctional materials raising increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behavior as well as characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25_C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behavior of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP.
Go to article

Authors and Affiliations

Maria Staszczak
1
ORCID: ORCID
Arkadiusz Gradys
2
ORCID: ORCID
Karol Golasiński
1
ORCID: ORCID
Elżbieta A. Pieczyska
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawi´nskiego 5B, 02-106 Warsaw, Poland
  2. Multidisciplinary Research Center, Cardinal Stefan Wyszy´ nski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland

This page uses 'cookies'. Learn more