Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The equine infectious anaemia virus (EIAV) is one of the most serious equine diseases worldwide. There is scarce information on the epizootiology of equine infectious anaemia (EIA) in Saudi Arabia. Given the importance of the equine industry in Saudi Arabia, this cross- -sectional study aims to provide information about the prevalence of EIAV based on serological surveillance of the equine population in the country. A total of 4728 sera samples were collected (4523 horses and 205 donkeys) between December 2017 and November 2019. All samples were tested using commercially available EIAV ELISA. All tested samples showed negative results for EIAV antibodies with a 95% confidence interval. The results provided evidence that Saudi Arabia’s equine populations (horses and donkeys) are currently free of EIAV. The results also suggest the need for continuous monitoring of EIAV and strict regulation when importing horses from other countries.
Go to article

Bibliography


Alnaeem AA, Hemida MG (2019) Surveillance of the equine infectious anemia virus in Eastern and Central Saudi Arabia during 2014-2016. Vet World 12: 719-723.
Ataseven VS, Arslan HH (2005) Equine infectious anemia in mules, donkeys, and horses: Epidemiologic studies in the different geographic regions of Turkey. J Equine Vet Sci 25: 439-441.
Body M, Al-Rawahi A, Hussain M, Al-Lamki K, Al-Habsy S, Almaawali M, Alrawahi Q (2011) Sero-survey of equine infectious anemia in the Sultanate of Oman during 2007-2009. Pak Vet J 31: 235-238.
Bolfa P, Jeon I, Loftis A, Leslie T, Marchi S, Sithole F, Beck C, Lecollinet S, Zientara S, Hans A, Issel CJ (2017) Detection of west nile virus and other common equine viruses in three locations from the Leeward Islands, West Indies. Acta Trop 174: 24-28.
Bolfa P, Nolf M, Cadoré JL, Catoi C, Archer F, Dolmazon C, Mornex JF, Leroux C (2013) Interstitial lung disease associated with equine infectious anemia virus infection in horses. Vet Res 44: 113.
Cook RF, Leroux C, Issel CJ (2013) Equine infectious anemia and equine infectious anemia virus in 2013: a review. Vet Microbiol 167: 181-204.
Cruz F, Fores P, Ireland J, Moreno MA, Newton R (2015) Freedom from equine infectious anaemia virus infection in Spanish Purebred horses. Vet Rec Open 2: e000074.
Dong J, Cook FR, Zhu W (2014) Equine infectious anemia virus in Japan: viral isolates V70 and V26 are of North American not Japanese origin. Vet Microbiol 174: 276-278.
Ghadrdan-Mashhadi A, Shapoori M, Yoonesi E (2010) Survey on equine infectious anemia in Ahvaz. J Vet Res 65: 245-269.
Issel CJ, Foil LD (1984) Studies on equine infectious anemia virus transmission by insects. J Am Vet Med Assoc 184: 293-297.
Issel CJ, Scicluna MT, Cook SJ, Cook RF, Caprioli A, Ricci I, Rosone F, Craigo JK, Montelaro RC, Autorino GL (2013) Challenges and proposed solutions for more accurate serological diagnosis of equine infectious anaemia. Vet Rec 172: 210.
Kemen MJ, Jr., Coggins L (1972) Equine infectious anemia: transmission from infected mares to foals. J Am Vet Med Assoc 161: 496-499.
Mooney J, Flynn O, Sammin D (2006) Equine infectious anaemia in Ireland: characterisation of the virus. Vet Rec 159: 570.
Nagarajan MM, Simard C (2007) Gag genetic heterogeneity of equine infectious anemia virus (EIAV) in naturally infected horses in Canada. Virus Res 129: 228-235.
OIE (2019) Equine infectious anaemia. OIE Terrestrial Manual [Online]. Available: https://www.oie.int/fileadmin//Home/eng/Health_standards/tahm/3.05.06_EIA.pdf.
Oliveira FG, Cook RF, Naves JHF, Oliveira CHS, Diniz RS, Freitas FJC, Lima JM, Sakamoto SM, Leite RC, Issel CJ, Reis JKP (2017) Equine infectious anemia prevalence in feral donkeys from Northeast Brazil. Prev Vet Med 140: 30-37.
Piza AS, Pereira AR, Terreran MT, Mozzer O, Tanuri A, Brandão PE, Richtzenhain LJ (2007) Serodiagnosis of equine infectious anemia by agar gel immunodiffusion and ELISA using a recombinant p26 viral protein expressed in Escherichia coli as antigen. Prev Vet Med 78: 239-245.
Reis JK, Diniz RS, Haddad JP, Ferraz IB, Carvalho AF, Kroon EG, Ferreira PC, Leite RC (2012) Recombinant envelope protein (rgp90) ELISA for equine infectious anemia virus provides comparable results to the agar gel immunodiffusion. J Virol Methods 180: 62-67.
Sellon DC, Fuller FJ, Mcguire TC (1994) The immunopathogenesis of equine infectious anemia virus. Virus Res 32: 111-138.
Sharav T, Konnai S, Ochirkhuu N, Ts EO, Mekata H, Sakoda Y, Umemura T, Murata S, Chultemdorj T, Ohashi K (2017) Detection and molecular characterization of equine infectious anemia virus in Mongolian horses. J Vet Med Sci 79: 1884-1888.
Go to article

Authors and Affiliations

S. Kasem
1 2
O. Hashim
1
A. Alkarar
1
A. Hodhod
1 3
A. Elias
1
M. Abdallah
1
A. Al-Sahaf
1
A. Al-Doweriej
1
I. Qasim
1
A.S. Abdel-Moneim
4

  1. Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia
  2. Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, El Geish Street, 33516, Egypt
  3. Animal Health Research Institute – Virology Department – Damanhur Branch – Egypt
  4. Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a unique method of an error detection and correction (EDAC) circuit, carried out using arithmetic logic blocks. The modified logic blocks circuit and its auxiliary components are designed with Boolean and block reduction technique, which reduced one logic gate per block. The reduced logic circuits were simulated and designed using MATLAB Simulink, DSCH 2 CAD, and Microwind CAD tools. The modified, 2:1 multiplexer, demultiplexer, comparator, 1-bit adder, ALU, and error correction and detection circuit were simulated using MATLAB and Microwind. The EDAC circuit operates at a speed of 454.676 MHz and a slew rate of -2.00 which indicates excellence in high speed and low-area.

Go to article

Authors and Affiliations

S. Kavitha
Fazida Hanim Hashim
Noorfazila Kamal
Download PDF Download RIS Download Bibtex

Abstract

The site preference of some transition metals during B2-type ordering has been investigated in the ternary Cu0.5(Zn1–xMx)0.5 alloys with M = Ti, V, Ag, Au, Cr, Mn, Fe, Co, Ni, Nb, Mo, Hf, Ta, W, Re or Pt (x ≤ 0.01). The statistic-o-thermodynamical theory combined with the electronic theory of alloys has been used to calculate the partial ordering energies, partial short range order parameters and the order-disorder transformation temperatures. The values of partial short range order parameters have been used to determine the site preference of the metal M. The analysis shows that the metals M can be divided into two groups with regard to lattice site occupancy. One group comprising of Cr, Mn, Fe, Co, Ni, Nb, Mo, Hf, Ta, W, Re or Pt was found to prefer Zn sublattice sites, while the second group of Ti, V, Ag or Au atoms prefer Cu sublattice sites. It is found that order-disorder transformation temperature and the site preference of metal M both depend strongly on the partial ordering energies and ternary alloying addition of metal M.

Go to article

Authors and Affiliations

N. Ahmad
A. B. Ziya
S. Atiq
K. Saifullah
M. Hashim
M. Saleem

This page uses 'cookies'. Learn more