Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hybridization of meta-heuristic algorithms plays a major role in the optimization problem. In this paper, a new hybrid meta-heuristic algorithm called hybrid pathfinder algorithm (HPFA) is proposed to solve the optimal reactive power dispatch (ORPD) problem. The superiority of the Differential Evolution (DE) algorithm is the fast convergence speed, a mutation operator in the DE algorithm incorporates into the pathfinder algorithm (PFA). The main objective of this research is to minimize the real power losses and subject to equality and inequality constraints. The HPFA is used to find optimal control variables such as generator voltage magnitude, transformer tap settings and capacitor banks. The proposed HPFA is implemented through several simulation cases on the IEEE 118-bus system and IEEE 300-bus power system. Results show the superiority of the proposed algorithm with good quality of optimal solutions over existing optimization techniques, and hence confirm its potential to solve the ORPD problem.
Go to article

Bibliography

  1.  M. Gwozd and L. Ciepliński, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter-part 1”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 401–408, 2020, doi: 10.24425/BPASTS.2020.133383.
  2.  M.N. Acosta, D. Topic, and M.A. Andrade, “Optimal Microgrid–Interactive Reactive Power Management for Day–Ahead Operation”, Energies, vol. 14, no. 5, p. 1275, 2021, doi: 10.3390/en14051275.
  3.  A.M. Tudose, I.I. Picioroaga, D.O. Sidea, and Co. Bulac, “Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm”, Energies, vol. 14, no. 5, p. 1222, 2021, doi: 10.3390/en14051222.
  4.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study”, Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
  5.  V. Suresh and S.S. Kumar, “Optimal reactive power dispatch for minimization of real power loss using SBDE and DE-strategy algorithm”, J. Ambient Intell. Hum. Comput., 2020, doi: 10.1007/s12652-020-02673-w.
  6.  H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: pathfinder algorithm”, Appl. Soft Comput., vol. 78, pp. 545–568, 2019, doi: 10.1016/j.asoc.2019.03.012.
  7.  R. Storn and K. Price, “Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces,” J. Global Optim., vol. 11, pp. 341– 359, 1997, doi: 10.1023/A:1008202821328.
  8.  R.P. Singha and S.P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers”, Appl. Soft Comput., vol. 29, pp. 298–309, 2015, doi: 10.1016/j.asoc.2015.01.006.
  9.  M. Ghasemi et. al, “A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables,” Appl. Soft Comput., vol. 22, pp. 126–140, 2014, doi: 10.1016/j.asoc.2014.05.006.
  10.  M. Ghasemi and M. Ghanbarian, “Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study”, Inf. Sci., vol. 278, pp. 231–249, 2014, doi: 10.1016/j.ins.2014.03.050.
  11.  B. Mandal and P.K. Roy, “Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization”, Electr. Power Energy Syst., vol. 53, pp. 123–134, 2013, doi: 10.1016/j.ijepes.2013.04.011.
  12.  S Mouassa and A. Salhi, “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”, Eng. Sci. Technol., vol. 20, pp 885–895, 2017, doi: 10.1016/j.jestch.2017.03.006.
  13.  S. Mugemanyi et. al., “Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm”, IEEE Access, vol. 8, pp. 65830–65867, 2020, doi: 10.1109/ACCESS.2020.2982988.
  14.  W.M. Villa-Acevedo and J.M. Lopez-Lezama, “A novel constraint handling approach for the optimal reactive power dispatch problem”, Energies, vol. 11, p. 2352, 2018, doi: 10.3390/en11092352.
  15.  R. Zimmerman, C.E. Murillo-Sanchez, and D. Gan, “MATPOWER 6.0, power systems engineering research center (PSERC)”, 2005, [Online]. Available: https://matpower.org/docs/MATPOWER-manual-6.0.pdf.
Go to article

Authors and Affiliations

V. Suresh
1
S. Senthil Kumar
1

  1. Department of Electrical and Electronics Engineering, Government College of Engineering, Salem-11, India
Download PDF Download RIS Download Bibtex

Abstract

In this paper, detailed theoretical investigation on the frequency response and responsivity of a strain balanced SiGeSn/GeSn quantum well infrared photodetector (QWIP) is made. Rate equation and continuity equation in the well are solved simultaneously to obtain photo generated current. Quantum mechanical carrier transport like carrier capture in QW, escape of carrier from the well due to thermionic emission and tunneling are considered in this calculation. Impact of Sn composition in the GeSn well on the frequency response, bandwidth and responsivity are studied. Results show that Sn concentration in the GeSn active layer and applied bias have important role on the performance of the device. Significant bandwidth is obtained at low reverse bias voltage, e.g., 200 GHz is obtained at 0.28 V bias for a single Ge0.83Sn0.17 layer. Whereas, the maximum responsivity is of 8.6 mA/W at 0.5 V bias for the same structure. However, this can be enhanced by using MQW structure.

Go to article

Authors and Affiliations

P. Pareek
M.K. Das
S. Kumar
Download PDF Download RIS Download Bibtex

Abstract

In this work, a comparative study on the ballistic behaviour of friction stir processed AL6061 targets had been made. Base Metal AL6061 (BM) plates with 25 mm thickness were friction stir processed by adding Multi Walled Carbon Nano Tubes (MWCNT) and Graphene (G), producing AL6061-MWCNT and AL6061-G surface composites. Optical microscopy and microhardness test on BM, AL6061-MWCNT and AL6061-G samples were performed as per the standard procedure. It was noticed that uniform dispersion of ceramic particles and refined grains were obtained for the friction stir processed surface composites. From the microhardness test, it was perceived that friction stir processing had induced strengthening of surface composites, hence increasing the microhardness of AL6061-MWCNT and AL6061-G by ~60.3% and ~73.6% respectively. Also, ballistic experiments were conducted at 680±10 m/s by impacting Ø7.62×51 mm projectiles. AL6063 backing plates were placed to compare the ballistic behaviours AL6061-MWCNT and AL6061-G targets by depth of penetration. It was noted that the depth of penetration of AL6061-MWCNT and AL6061-G targets were 37.81% and 65.84% lesser than the BM target. Further, from the results of Post ballistic microscopy it was observed that the microstructure near and away from the penetration channel edge looks unchanged in BM target. However, the AL6061-MWCNT and AL6061-G targets showed considerable change in their morphology, by forming Adiabatic Shear Bands.
Go to article

Authors and Affiliations

U. Magarajan
1
ORCID: ORCID
S. Suresh Kumar
2
ORCID: ORCID

  1. Sri Venkateswara College of Engineering, Chennai, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.

Go to article

Authors and Affiliations

S. Sharma
S. Shriwastava
S. Kumar
K. Bhatt
C. Charu Tripathi
Download PDF Download RIS Download Bibtex

Abstract

Dielectric properties of a nematic liquid crystal (NLC) mixture ZhK-1282 were investigated in the frequency range of 102–106 Hz and a temperature range of −20 to 80°С. On the basis of the Debye’s relaxation polarization model dielectric spectra of temperature dependence of the orientational relaxation time τ and the dielectric strength δe were numerically approximated at the parallel orientation of a molecular director relative to alternating electric field. Influence of ester components in the mixture plays crucial role in relaxation processes at low temperature and external field frequency. The activation energy of the relaxation process of a rotation of molecules around their short axis was measured in a temperature interval of −20 to  +15°С in which the dispersion of a longitudinal component of the dielectric constant takes place. The energy of potential barrier for polar molecules rotation in the mesophase was calculated. The value of the transition entropy from the nematic to isotropic phase was obtained from this calculation. The values of the coefficient of molecular friction and rotational diffusion were obtained by different methods. The experimental data obtained are in a satisfactory agreement with the existing theoretical models.

Go to article

Authors and Affiliations

D.N. Chausov
А.D. Kurilov
V.V. Belyaev
S. Kumar
Download PDF Download RIS Download Bibtex

Abstract

Designing of a nanoscale Quantum Well (QW) heterostructure with a well thickness of ∼60 Å is critical for many applications and remains a challenge. This paper has a detailed study directed towards designing of In0.29Ga0.71As0.99N0.01/GaAs straddled nanoscale-heterostructure having a single QW of thickness ∼60 Å and optimization of optical and lasing characteristics such as optical and mode gain, differential gain, gain compression, anti-guiding factor, transparency wavelength, relaxation oscillation frequency (ROF), optical power and their mutual variation behavior. The outcomes of the simulation study imply that for the carrier concentration of ∼2 × 1018cm−3 the optical gain of the nano-heterostructure is of 2100 cm−1 at the wavelength is of 1.30 μm. Though the obtained gain is almost half of the gain of InGaAlAs/InP heterostructure, but from the wavelength point of view the InGaAsN/GaAs nano-heterostructure is also more desirable because the 1.30 μm wavelength is attractive due to negligible dispersion in the silica based optical fiber. Hence, the InGaAsN/GaAs nano-heterostructure can be very valuable in optical fiber based communication systems.

Go to article

Authors and Affiliations

K. Sandhya
G. Bhardwaj
R. Dolia
P. Lal
S. Kumar
S. Dalela
F. Rahman
P.A. Alvi
Download PDF Download RIS Download Bibtex

Abstract

The electrical contactors play a crucial role in closing the circuit in many power distribution components like overhead lines, underground cables, circuit breakers, transformers, and control systems. The failure in these components mainly occurs due to the break-down of contactors due to the continuous opening and closing action of contacts. Silver (Ag)-based oxide contact materials are widely used in practice, among which silver tin oxide (AgSnO2) is most common. An attempt is made in increasing the performance of AgSnO2, by adding Tungsten Oxide (WO3) in various weight proportions, thus finding the optimal proportion of AgSnO2WO3 to have increased mechanical and electrical performances. All the composite samples are fabricated in-house using powder metallurgy process. The assessment of physical and electrical properties namely, density, hardness, porosity, and electrical conductivity, showed that 90%Ag-8.5%SnO2-1.5%WO3 composite yielded superior results. With help of morphological tests, wear characteristics are also investigated, which showed that 90%Ag-8.5%SnO2-1.5%WO3 composite has a wear coefficient of 0.000227 and a coefficient of friction of 0.174 at an optimized load of 10 N and sliding velocity of 0.5 mm/s.
Go to article

Bibliography

[1] P.B. Joshi, N.S.S. Murti, V.L. Gadgeel, V.K. Kaushik, J. Mater. Sci. Lett. 14 (16), 1099-1101 (1995). DOI: https://doi.org/10.1007/BF00423372
[2] P.B. Joshi, P. Ramakrishnan, Materials for electrical and electronic contacts: processing, properties, and applications, Science Pub Inc. (2004).
[3] Z. Ying, W. Jingqin, K. Huiling, IEEE T. Comp. Pack. Man. 9 (5), 864-870 (2018). DOI: https://doi.org/10.1109/TCPMT.2018.2882237
[4] P.B. Joshi, V.J. Rao, B.R. Rehani, A. Pratap, Silver-Zinc oxide electrical contact materials by mechanochemical synthesis route (2007).
[5] B. Holm, Northwest coast Indian art: An analysis of form. University of Washington Press (2017).
[6] O. Nilsson, F. Hauner, D. Jeannot, Replacement of AgCdO by AgSnO/sub 2/in DC contactors, In Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts. (pp. 70-74). IEEE (2004 September). DOI: https://doi.org/10.1109/HOLM.2004.1353097
[7] D .A. Romanov, S.V. Moskovskii, E.A. Martusevich, E.A. Gayevoy, V.E. Gromov, Structural-phase state of the system “CdO-Ag coating/copper substrate” formed by electroexplosive method. Metalurgija 57 (4), 299-302 (2018).
[8] P.G. Slade, R.K. Smith, Electrical switching life of vacuum circuit breaker interrupters. In Electrical Contacts-2006. Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts (pp. 32- 37). IEEE (2006, September). DOI: https://doi.org/10.1109/HOLM.2006.284061
[9] S.H. Choi, B. Ali, S.Y. Kim, S.K. Hyun, S.J. Seo, K.T. Park, J.S. Park, Int. J. Appl. Ceram. Tec. 13 (2), 258-264 (2016). DOI: https://doi.org/10.1111/ijac.12478
[10] C. Wu, Q. Zhao, N. Li, H. Wang, D. Yi, W. Weng, J. Alloy Compd. 766, 161-177 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.06.317
[11] J.L. Wintz, S. Hardy, Design guideline of contactors: optimal use of assembled contacts. In 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013) (pp. 1-10). IEEE (2013, September). DOI: https://doi.org/10.1109/HOLM.2013.6651406
[12] N.M. Talijan, V. Ćosović, J. Stajić-Trošić, A. Grujić, D. Živkovic, E. Romhanji, J. Min. Metall. B. 43 (2), 171-176 (2007). DOI: https://doi.org/10.2298/JMMB0702171T
[13] B. Rehani, P.B. Joshi, P.K. Khanna, J. Mater. Eng. Perform. 19 (1), 64-69 (2010). DOI: https://doi.org/10.1007/s11665-009-9437-3
[14] P.G. Slade, (Ed.), Electrical contacts: principles and applications, CRC Press (2017).
[15] M.W. Richert, J. Richert, A. Hotloś, P. Pałka, W. Pachla, M. Perek- Nowak, In Mater. Sci. Forum. 667, 145-150 (2011). DOI: https://doi.org/10.4028/www.scientific.net/MSF.667-669.145
[16] V. Ćosović, N. Talijan, D. Živković, D. Minić, Z. Živković, J. Min. Metall. B. 48 (1), 131-141 (2012).
[17] K. Wojtasik, W. Missol, Metal Powder Report 59 (7), 34-39 (2004). DOI: https://doi.org/10.1016/S0026-0657(04)00206-1
[18] M . Lungu, S. Gavriliu, T. Canta, M. Lucaci, E. Enescu, J. Optoelectron. Adv. M. 8 (2), 576 (2006).
[19] V. Ćosović, M.M. Pavlović, A. Cosovic, P. Vulić, M. Premović, D. Živković, N.M.Talijan, Sci. Sinter. 45 (2), 173-180 (2013). DOI: https://doi.org/10.2298/SOS1302173C
[20] N.M. Talijan, Zaštitamaterijala 52 (3), 173-180 (2011).
[21] M . Mustapha, F. Mustapha, O. Mamat, P. Hussain, Powder Metall. 54 (3), 343-353 (2011). DOI: https://doi.org/10.1179/003258909X12573447241581
[22] N.M. Talijan, V.R. Ćosović, A.R. Ćosović, D.T. Živković, Metallurgical and Materials Engineering 18 (4), 259-272 (2012).
[23] M . Braunovic. IEICE T. Electron. 92 (8), 982-991 (2009). DOI: https://doi.org/10.1587/transele.E92.C.982
[24] A . Dogariu, S. Sukhov, J. Sáenz, Nat. Photonics. 7 (1), 24-27 (2013). DOI: https://doi.org/10.1038/nphoton.2012.315
[25] M . Taher, F. Mao, P. Berastegui, A.M. Andersson, U. Jansson, Tribol. Int. 119, 680-687 (2018). DOI: https://doi.org/10.1016/j.triboint.2017.11.026
[26] F. Findik, H. Uzun, Mater. Design 24 (7), 489-492 (2003). DOI: https://doi.org/10.1016/S0261-3069(03)00125-0
[27] B.A. Wasmi, A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, J. Nanomater. (2014).
[28] M . Lungu, S. Gavriliu, D. Patroi, M. Lucaci, Adv. Mat. Res. 23, 103-106 (2007). DOI: https://doi.org/10.4028/www.scientific.net/AMR.23.103
[29] M . Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Optik 145, 169-180 (2017). DOI: https://doi.org/10.1016/j.ijleo.2017.07.049
[30] E . Harea, I. Lapsker, A. Laikhtman, L. Rapoport, L. Tribol, Lett. 52 (2), 205-212 (2013).
[31] S. Praveen Kumar, R. Parameshwaran, A. Ananthi, J. JenilJaba Sam, Arch. Metall. Mater. 62 (2017). DOI: https://doi.org/10.1515/amm-2017-0287
[32] S.P. Kumar, R. Parameshwaran, S.A Kumar, S. Nathiya, K. Heenalisha, Mater. Today-Proc. (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.666
[33] H . Li, X. Wang, Y. Xi, Y. Liu, X. Guo, Mater. Design. 121, 85-91 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.02.059
[34] Mohd Shahadan Mohd Suan, Nurulhawa Ali Hasim, Mohd Edeerozey Abd Manaf, Mohd Rafie Johan, Chinese J. Phys. 55 (5), 1857-1864 (2017). DOI: https://doi.org/10.1016/j.cjph.2017.08.012
Go to article

Authors and Affiliations

S. Praveen Kumar
1
ORCID: ORCID
S.M. Senthil
1
ORCID: ORCID
R. Parameshwaran
1
ORCID: ORCID
R. Rathanasamy
1
ORCID: ORCID

  1. Kongu Engineering College, Erode, Tamilnadu, India

This page uses 'cookies'. Learn more