Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Manufacturing errors (MEs) are unavoidable in product fabrication. The omnipresence of manufacturing errors (MEs) in product engineering necessitates the development of robust optimization methodologies. In this research, a novel approach based on the morphological operations and interval field (MOIF) theory is proposed to address MEs in the discrete-variable-based topology optimization procedures. On the basis of a methodology for deterministic topology optimization (TO) based on the Min-Cut, MOIF introduces morphological operations to generate geometrical variations, while the dimension of the structuring element is dynamically set by the interval field function’s output. The effectiveness of the proposed approach as a powerful tool for accounting for spatially uneven ME in the TOs has been demonstrated.
Go to article

Authors and Affiliations

Meng Xia
1
Jing Li
1

  1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310027, China
Download PDF Download RIS Download Bibtex

Abstract

This paper takes a 50 kW interior permanent magnet brushless DC motor as an example, and explores the influence of the degree of stator slot skew on the overall motor magnetic density and air gap magnetic density; then reveals the influences of stator slot skewed structure on a series of key electromagnetic properties like no-load back electromotive force (B-EMF), cogging torque, electromagnetic torque, torque fluctuation, electromagnetic loss, input power, output power and operating efficiency. On this basis, a relatively best range of the skew degrees is obtained. The research work in this paper has direct reference value for the further improvement of design and manufacture, operation and maintenance, control and protection of such motors.
Go to article

Bibliography

[1] Zhang Chen, Principle and Application of Brushless DC Motor, China Machinery Industry Press, Beijing (1996).
[2] Tang Renyuan, Modern Permanent Magnet Motor Theory and Design, Mechanical Industry Press, Beijing (2005).
[3] LiWeiqi, LinRongwen, Tao Tao, Optimized design based on the air gap length of the built-in permanent magnet brushless DC motor, Electric Switchgear, vol. 58, no. 05, pp. 58–63 (2020).
[4] Parsa L., Hao L., Interior Permanent Magnet Motors with Reduced Torque Pulsation, IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 602–609 (2008), DOI: 10.1109/TIE.2007.911953.
[5] Ren Dejiang, Huang Qu, Li Jianjun, Wu Ning, Cogging torque optimization analysis of built-in permanent magnet synchronous motor, Explosion-Proof Electric Machine, vol. 54, no. 4, pp. 4–7+43 (2019).
[6] Zhao W., Lipo T.A., Kwon B., Torque Pulsation Minimization in Spoke-type Interior Permanent Magnet Motors with Skewing and Sinusoidal Permanent Magnet Configurations, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4 (2015), DOI: 10.1109/TMAG.2015.2442977.
[7] AimengW., Heming L.,Weifu L., Haisen Z., Influence of skewed and segmented magnet rotor on IPM machine performance and ripple torque for electric traction, IEEE International Electric Machines and Drives Conference, pp. 305–310 (2009), DOI: 10.1109/IEMDC.2009.5075222.
[8] Adrian Młot, Marcin Kowol, Janusz Kołodziej, Andrzej Lechowicz, Piotr Skrobotowicz, Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2 (2020), DOI: 10.24425/aee.2020.133038.
[9] Yang Zhihao, Yang Mengxue, Wang Sinuo, Bao Xiaohua, The influence of stator skew on the performance of permanent magnet synchronous motors, Transactions of the Chinese Society of Electrical Engineering, vol. 14, no. 3, pp. 97–102 (2019).
[10] Wang Dongliang, Chen Wei, Discussion on the electromagnetic design of concentrated winding permanent magnet motor from the perspective of torque fluctuation, Electric Tool, vol. 4, pp. 15–17 (2017), DOI: 10.16629/j.cnki.1674-2796.2017.04.004.
[11] Xiaodong S., Zhou S., Long C., Zebin Y., Skew Angle Optimization Analysis of a Permanent Magnet Synchronous Motor for EVs, IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 1–2 (2018), DOI: 10.1109/ASEMD.2018.8558826.
[12] Wang Changcheng, Guo Hui, Sun Pei, Liu Ningning,Wang Yansong, Qin Yifei, A method for reducing cogging torque of permanent magnet synchronous motors, Light Industry Machinery, vol. 36, no. 6, pp. 62–66 (2018).
[13] He Qiang, Magnetic field analysis and cogging torque study of brushless DC permanent magnet motors, Hefei University of Technology (2016).
[14] Hongwei Fang, Hongxu Chen, Analysis and reduction of the cogging torque of flux-modulated generator for wave energy conversion, Energy Procedia, vol. 158, pp. 327–332 (2019), DOI: 10.1016/j.egypro.2019.01.097.
[15] Fu Lixin et al., GB/T 1029-2005 Three-phase synchronous motor test method, China Standard Press, Beijing (2006).
Go to article

Authors and Affiliations

Xue-gui Gan
1
ORCID: ORCID
Zhen-nan Fan
1
ORCID: ORCID
Jing-can Li
2
ORCID: ORCID

  1. The Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, China
  2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China

This page uses 'cookies'. Learn more