Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Duck viral hepatitis (DVH) is an acute and fatal disease of young ducklings characterized by rapid transmission and damages. The most important agent of DVH is duck hepatitis virus 1 (DHV-1). The effective control of DVH was achieved by active immunization of 1-day-old duck- lings with an attenuated DHV-1 virus vaccine. However, the attenuated virus might reverse to virulence. In this study, a DHV-1 strain, Du/CH/LBJ/090809, was identified and its genomic se- quences were determined. The genome of Du/CH/LBJ/090809 is composed of 7,692 nt excluding poly A and the virus was clustered into genotype A by comparing with other referenced DHV-1 strains. Du/CH/LBJ/090809 could lead to 30% mortality of 10-day-old specific pathogen free (SPF) ducklings. The virus was passaged serially in SPF chicken embryonated eggs and three vi- ruses, passage 16 (P16), P29 and P40, were selected for genomic analysis. P29 and P40 were used to evaluate the attenuation in duckling by inoculating the virus to 10-day-old SPF ducklings. Re- sults of vaccination-challenge assay showed that the inactivated virus P40 could evoke protection against the pathogenic parent virus. Nucleotide and amino acid sequences of the genomes of Du/ CH/LBJ/090809, P16, P29 and P40 were compared. Changes both in nucleotides and amino acids, which might be contributed to the decreasing in virulence by chicken embryo-passaging of DHV- 1, were observed. We speculated that these changes might be important in the adaption and at- tenuation of the virulent virus. Additionally, strains obtained in this study will provide potential candidate in the development of vaccines against DHV-1.

Go to article

Authors and Affiliations

X. Liu
X. Kong
Download PDF Download RIS Download Bibtex

Abstract

Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat

and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting

speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the

range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically

downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower

wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along

the wall of the mold and flows upward in the center.

Go to article

Authors and Affiliations

J. Luo
X. Liu
X. Wang
Download PDF Download RIS Download Bibtex

Abstract

Chlorocresol nanoemulsion disinfectant (CND) is an environmental disinfectant prepared with nanoemulsion as its drug carrier. This study aimed to investigate the bactericidal effect of CND on Staphylococcus aureus ( S. aureus) and its effect on bacterial ultrastructure. The neutralizing effect of CND against S. aureus was first screened by suspension quantitative evaluation experiment procedure of neutralizer. Disinfection performance was evaluated by the determination of Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), quantitative bactericidal experiment, and comparative experiment of disinfection performance between 0.1% CND and 0.1% chlorocresol aqueous solution. Meanwhile, the effect of CND on the ultrastructure of S. aureus was investigated with scanning electron microscope (SEM) and transmission electron microscope (TEM) to preliminarily explore the bactericidal mechanism. The results showed that 3% Tween-80 in PBS could be screened as the neutralizer of CND against S. aureus. MIC and MBC were 100 μg/mL and 200 μg/mL, respectively. The bactericidal rates were all 100% when 0.06% and 0.08% disinfectant acted for 15 and 5 min, respectively. Furthermore, compared with 0.1% chlorocresol aqueous solution, the bactericidal effect of 0.1% CND was significantly enhanced (p<0.01). After treatment with CND for 10 min, SEM observation showed that the morphology of S. aureus cells were changed and the integrity destroyed. TEM observation showed that the cell shape changed, and the structures of the cell wall, cell membrane and cytoplasm were damaged in varying degrees. CND showed the strong bactericidal effect on S. aureus and could cause ultrastructure alterations of S. aureus.
Go to article

Bibliography

References:

Abdelmonem R, Younis MK, Hassan DH, El-Sayed Ahmed M, Hassanein E, El-Batouty K, Elfaham A (2019) Formulation and characterization of chlorhexidine HCl nano-emulsion as a promising antibacterial root canal irrigant: in-vitro and ex-vivo studies. Int J Nanomedicine 14: 4697-4708.
Badruddoza AZ, Gupta A, Myerson AS, Trout BL, Doyle PS (2018) Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Adv Ther 1: 1700020.
Boyce JM (2016) Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 5: 10.
Chen LH, Cheng LC, Doyle PS (2020) Nanoemulsion-loaded capsules for controlled delivery of lipophilic active ingredients. Adv Sci 7: 2001677.
Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker JR Jr (2003) Inactivation of Ebola virus with a surfactant nanoemulsion. Acta Trop 87: 315-320.
Dancer SJ (2014) Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 27: 665-690.
Eissa M, Ashour ED, Mansy MS (2012) Neutralizer evaluation study of some microbial isolates against two strong disinfectants with and without the presence of synthetic detergent. World Appl Sci J 20: 823-831.
Hamouda T, Hayes MM, Cao Z, Tonda R., Johnson K, Wright DC, Brisker J, Baker JR Jr (1999) A novel surfactant nanoemulsion with broad-spectrum spori-cidal activity against Bacillus species. J Infect Dis 180: 1939-1949.
Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR Jr (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156: 1-7.
Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA (2015) Cleaning hospital room surfaces to prevent health care-associated infections: a technical brief. Ann Intern Med 163: 598-607.
Hashemnejad SM, Badruddoza AZ, Zarket B, Ricardo Castaneda C, Doyle PS (2019) Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat Commun 10: 2749.
Hidber T, Pauli U, Steiner A, Kuhnert P (2020) In vitro and ex vivo testing of alternative disinfectants to currently used more harmful substances in footbaths against Dichelobacter nodosus. PLoS One 15: e0229066.
Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, Haas SE, Ramos Maciel T, Reginatto Lazzari N, Kelmer EL, Pinto Vilela JA, Beckmann DV (2020) Chlorhexidine nanoemulsion: a new antiseptic formulation. Int J Nanomedicine 15: 6935-6944.
Hu GZ, Qiu YS (2010) Medicines commonly used in poultry and their rational use. Henan Science and Technology Press, Zhengzhou, p 27.
Matsubara T, Maki S, Toshimori Y (2021) The effectiveness of a nonalcoholic disinfectant containing metal ions, with broad antimicrobial activity. Sci Rep 11: 1072.
Ministry of Health of the People’s Republic of China (2008) Technical standard for disinfection. Ministry of Health of the People’s Republic of China, Beijing, pp 21-52.
Mu SY, Liu DY, Bai YZ, Yang WY, Shi YL, Li S, Ning MX, Yang XF (2016) Disinfection efficacy of chlorocresol nanoemulsion disin-fectant. Chin J Vet Med 52: 35-37.
Ramalingam K, Frohlich NC, Lee VA (2013) Effect of nanoemulsion on dental unit waterline biofilm. J Dent Sci 8: 333-336.
Roedel A, Vincze S, Projahn M, Roesler U, Robé C, Hammerl JA, Noll M, Al Dahouk S, Dieckmann R (2021) Genetic but no phenotypic associations between biocide tolerance and antibiotic resistance in Escherichia coli from german broiler fattening farms. Microorganisms 9: 651.
Wei QH, Zhang WF, Wang CD, Lu Y, Wang JY, Zhang M (2004) Experimental observation on properties of a compound germicidal nanoemulsion. Chin J Dis 21: 1-4.
Yang XF, Qi YH, Ning HM, Wang QH (2012) Preparation and quality evaluation of enrofloxacin nanoemulsion. J Zhejiang Univ (Agric & Life Sci) 38: 693-699.
Yang XF, Sun YW, Mu SY, Liu DY, Hu JH, Xu YZ, Bai YZ, Shi YL (2016) Evaluation of characterization and disinfection efficacy of chlorocresol nanoemulsion disinfectant. RSC Adv 6: 12730-12736.
Yin M, Zhang DL, Sun YJ, Li XH, Li YY, Xu P, Xue MQ, Jin MY, Yang XF (2020) Fungicidal effect of chlorcresol nanoemulsion disinfectant. J Northwest A&F Univ (Nat Sci Ed) 48: 18-23.
Go to article

Authors and Affiliations

Y.F. Zhang
1
Y.W. Sun
1
X.H. Liu
1
Z.X. An
1
X.F. Yang
1

  1. College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Hualan Road No. 90, Xinxiang City, Henan Province, 453003, China
Download PDF Download RIS Download Bibtex

Abstract

In order to compare the pathogenicity of different Tembusu virus (TMUV) strains from geese, ducks and chickens, 56 5-day-old Cherry Valley ducklings which were divided into 7 groups and infected intramuscularly with 7´105 PFU/ml per duck of six challenge virus stocks. The clinical signs, weight gain, mortality, macroscopic and microscopic lesions, virus loads in sera of 1, 3, 5, 7, 11 and 14 dpi and serum antibody titers were examined. The results showed that these viruses could make the young ducks sick, but the clinical signs differed with the different species-original strains. All the experimental groups lose markedly in weight gain compared to the control, but there were no obvious distinctions in weight gains, as well as macroscopic and microscopic lesions of dead ducks between the infected groups. However, the groups of waterfowl-derived strains (from geese and ducks) showed more serious clinical signs and higher relative expressions of virus loads in sera than those from chicken-derived. The mortality of waterfowl groups was 37.5%, and the greatest mortality of chicken groups was 12.5%. The serum antibodies of the geese-species group JS804 appeared earlier and were higher in the titers than others. Taken toghter, the pathogenicity of waterfowl-derived TMUV was more serious than chicken-derived TMUV and JS804 could be chosen as one TMUV vaccine strain to protect from the infection.
Go to article

Authors and Affiliations

Y. Li
Q. Liu
T. Xu
X. Huang
X. Liu
K. Han
Y. Liu
J. Yang
D. Zhao
K. Bi
W. Sun
Download PDF Download RIS Download Bibtex

Abstract

Porcine epidemic diarrhea (PED) is a disease extremely harmful to pig health. Intramuscular and Houhai acupoint injections are the main immunization routes to prevent and control PED. This study aimed to evaluate the efficacy of these two routes in pregnant sows based on serum IgG, IgA, and neutralizing antibody levels. PED virus (PEDV) immunoprophylaxis with live-attenuated and inactivated vaccines was administered. The vaccinations for the intramuscular injections elevated IgG and neutralizing antibody levels more than Houhai acupoint injections at most timepoints after immunization. However, the anti-PEDV IgA antibodies induced by vaccination with the two immunization routes did not differ significantly. In conclusion, intramuscular injections are better than Houhai acupoint injections for PEDV vaccination of pregnant sows.
Go to article

Bibliography

1. Brown J, Poonsuk K, Cheng TY, Rademacher C, Kalkwarf E, Tian L, McKeen LA, Wang C, Gimenez-Lirola L, Baum D, Karriker LA (2023) Comparison of two diagnostic assays for the detection of serum neutralizing antibody to porcine epidemic diarrhea virus. Animals (Basel) 13:757.
2. Hsueh FC, Chang YC, Kao CF, Hsu CW, Chang HW (2020) Intramuscular immunization with chemokine-adjuvanted inactive porcine epidemic diarrhea virus induces substantial protection in pigs. Vaccines (Basel) 8:102.
3. Jin H, Wu Y, Bi S, Xu Y, Shi F, Li X, Ma X, Hu S (2020) Higher immune response induced by vaccination in Houhai acupoint relates to the lymphatic drainage of the injection site. Res Vet Sci 130: 230-236.
4. Jung K, Saif LJ, Wang Q (2020) Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and pre-vention and control. Virus Res 286: 198045.
5. Krishna VD, Kim Y, Yang M, Vannucci F, Molitor T, Torremorell M, Cheeran MC (2020) Immune responses to porcine epidemic diar-rhea virus (PEDV) in swine and protection against subsequent infection. PLoS One 15: e0231723.
6. Langel SN, Paim FC, Alhamo MA, Buckley A, Van Geelen A, Lager KM, Vlasova AN, Saif LJ (2019) Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets. Front Immunol 10: 727.
7. Lee C (2015) Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J 12: 193.
8. Lv C, Xiao Y, Li X, Tian K (2016) Porcine epidemic diarrhea virus: current insights. Virus Adapt Treat 8: 1-12.
9. Shibata I, Tsuda T, Mori M, Ono M, Sueyoshi M, Uruno K (2000) Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet Microbiol 72: 173-182.
10. Sun D, Wang X, Wei S, Chen J, Feng L (2016) Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review. J Vet Med Sci 78: 355-363.
11. Xu W, Hu S (2021) Administration of infectious bursal disease vaccine in Houhai acupoint promotes robust immune responses in chickens. Res Vet Sci 142: 149-153.
Go to article

Authors and Affiliations

C. Hu
1
X. Xie
2
D. Zhao
3
H. Liu
1
ORCID: ORCID
X. Liu
4
T. Yang
5
W. Sun
6

  1. Pulike Biological Engineering Inc., Luoyang, Henan, 471000, China
  2. Yiyang Vocational and Technical College, Yiyang, Hunan, 413055, China
  3. College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
  4. Xiangtan Center for Animal Disease Prevention and Control, Xiangtan, Hunan, 411104, China
  5. College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi, 336000, China
  6. Sinopharm Animal Health Corporation Ltd., Wuhan, Hubei, 430075, China
Download PDF Download RIS Download Bibtex

Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major public health concern. Nucleocapsid (N) protein is the most abundant structural protein on SARS-CoV-2 virions and induces the production of antibodies at the early stage of infection. Large-scale preparation of N protein is essential for the development of immunoassays to detect antibodies to SARS-CoV-2 and the control of virus transmission. In this study, expression of water-soluble N protein was achieved through inducing protein expression at 25°C with 0.5 mM IPTG for 12 h. Western blot and ELISA showed that recombinant N protein could be recognized by sera collected from subjects immunized with Sinovac inactivated SARS-CoV-2 vaccine. Four monoclonal antibodies namely 2B1B1, 4D3A3, 5G1F8, and 7C6F5 were produced using hybridoma technology. Titers of all four monoclonal antibodies in ELISA reached more than 1.28×10 6.0. Moreover, all monoclonal antibodies could react specifically with N protein expressed by transfection of pcDNA3.1-N into BHK-21 cells in IPMA and IFA. These results indicated that water-soluble N protein retained high immunogenicity and possessed the same epitopes as that of native N protein on virions. In addition, the preparation of water-soluble N protein and its monoclonal antibodies laid the basis for the development of immunoassays for COVID-19 detection.
Go to article

Bibliography

1. Bai Z, Cao Y, Liu W, Li J (2021) The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a poten-tial target for drug or vaccine mitigation. Viruses 13: 1115.
2. Bates TA, Weinstein JB, Farley S, Leier HC, Messer WB, Tafesse FG (2021) Cross-reactivity of SARS-CoV structural protein antibod-ies against SARS-CoV-2. Cell Rep 34: 108737.
3. Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J (2020) SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses 13: 47.
4. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92: 418-423.
5. Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N (2021) Viral respiratory pathogens and lung injury. Clin Microbiol Rev 34: e00103-00120.
6. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L, Han L, Dang S, Xu Y, Yang QW, Xu SY, Zhu HD, Xu Y,C Jin Q, Sharma L, Wang L, Wang J (2020) Profiling early humoral response to diagnose novel corona-virus disease (COVID-19). Clin Infect Dis 71: 778-785.
7. Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9: 16850.
8. Han Y, Luo Z, Zhai W, Zheng Y, Liu H, Wang Y, Wu E, Xiong F, Ma Y (2020) Comparison of the clinical manifestations between dif-ferent age groups of patients with overseas imported COVID-19. PLoS One 15: e0243347.
9. Ji T, Liu Z, Wang G, Guo X, Akbar khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q (2020) Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 166: 112455.
10. Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against Porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
11. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Vi-ruses 12: 372.
12. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J (2020) The incubation period of coro-navirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172: 577-582.
13. Leung NH (2021) Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19: 528-545.
14. Liao M, Yan J, Wang X, Qian H, Wang C, Xu D, Wang B, Yang B, Liu S, Zhou M, Gao Q, Zhou Q, Luo J, Li Z, Liu W (2020) De-velopment and clinical application of a rapid SARS-CoV-2 antibody test strip: A multi-center assessment across China. J Clin Lab Anal 35: e23619.
15. Liu P, Zong Y, Jiang S, Jiao Y, Yu X (2021) Development of a nucleocapsid protein-based ELISA for detection of human IgM and IgG antibodies to SARS-CoV-2. ACS Omega 6: 9667-9671.
16. Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, Tian D, Liao Y, Liu T, Lu H, Ling Y (2021) Rapid SARS-CoV-2 antigen detection poten-tiates early diagnosis of COVID-19 disease. Biosci Trends 15: 93-99.
17. Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, Chan RC, Tsang DN (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129: 104500.
18. Malik YA (2020) Properties of coronavirus and SARS-CoV-2. Malays J Pathol 42: 3-11.
19. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398: 622-637.
20. Okba NM, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Hingrat QL, Descamps D, Houhou-Fidouh N, Reusken CB, Bosch BJ, Drosten C, Koopmans MP, Haagmans BL (2020) Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 26: 1478-1488.
21. Rump A, Risti R, Kristal ML, Reut J, Syritski V, Lookene A, Boudinot SR (2021) Dual ELISA using SARS-CoV-2 nucleocapsid pro-tein produced in E. coli and CHO cells reveals epitope masking by N-glycosylation. Biochem Biophys Res Commun 534: 457-460.
22. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14: 41.
23. Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A (2022) Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 106: 1151-1164.
24. Vashisht K, Goyal B, Pasupureddy R, Na BK, Shin HJ, Sahu D, De S, Chakraborti S, Pandey KC (2023) Exploring the immunodomi-nant epitopes of SARS-CoV-2 nucleocapsid protein as exposure biomarker. Cureus 15: e34827.
25. Wang Y, Liu X, Tao L, Xu P, Gao X, Li H, Yang Z, Wu W (2017) Expression and immunogenicity of VP40 protein of ZEBOV. Arch Iran Med 20: 246-250.
26. Wang YB, Li YH, Li QM, Xie WT, Guo CL, Guo JQ, Deng RG, Zhang GP (2019) Development of a blocking immunoperoxidase monolayer assay for differentiation between pseudorabies virus-infected and vaccinated animals. Pol J Vet Sci 44: 717-723.
27. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527: 618-623.
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.
Go to article

Authors and Affiliations

Y.B. Wang
1
S.W. Wang
2
Q.Y. Jin
3
L.P. Chen
4
F.Q. Zhang
1
J.J. Shi
1
Y. Yin
5
Z.X. Fan
1
X.Y. Liu
6
L.P. Wang
6
P. Li
6

  1. School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
  2. School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P.R. China
  3. Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R. China
  4. Gushi County Center for Animal Disease Control and Prevention, Xinyang 465200, P.R. China
  5. Mingde College of Xinxiang Medical University, Xinxiang 453003, P.R. China
  6. School of Biological Engineering, Xinxiang University, Xinxiang 453003, P.R. China

This page uses 'cookies'. Learn more