Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Go to article

Authors and Affiliations

Vasyl Kovalchuk
1
ORCID: ORCID
Ivaïlo M. Mladenov
2 3
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria
  3. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

In this paper we explore the mechanics of infinitesimal gyroscopes (test bodies with internal degrees of freedom) moving on an arbitrary member of the helicoid-catenoid family of minimal surfaces. As the configurational spaces within this family are far from being trivial manifolds, the problem of finding the geodesic and geodetic motions presents a real challenge. We have succeeded in finding the solutions to those motions in an explicit parametric form. It is shown that in both cases the solutions can be expressed through the elliptic integrals and elliptic functions, but in the geodetic case some appropriately chosen compatibility conditions for glueing together different branches of the solution are needed. Additionally, an action-angle analysis of the corresponding Hamilton-Jacobi equations is performed for external potentials that are well-suited to the geometry of the problem under consideration. As a result, five different sets of conditions between the three action variables and the total energy of the infinitesimal gyroscopes are obtained.
Go to article

Bibliography

  1.  I.M. Mladenov and M.Ts. Hadzhilazova, “Geometry of the anisotropic minimal surfaces”, An. St. Univ. Ovidius Constanta 20, 79–88 (2012).
  2.  J. Zmrzlikar, Minimal Surfaces in Biological Systems, Faculty of Mathematics and Physics, University of Ljubljana, 2011.
  3.  S.N. Krivoshapko and V.N. Ivanov, Encyclopedia of Analytical Surfaces, Springer, New York-London, 2015.
  4.  A. Gray, E. Abbena, and S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman and Hall/CRC, New York, 2006.
  5.  S. Amari and A. Cichocki, “Information geometry of divergence functions”, Bull. Pol. Acad. Sci. Tech. Sci. 58, 183–195 (2010).
  6.  I.S. Gradstein and I.M. Ryzhik, Tables of Integrals, Series, and Products (7th Edition), eds. A. Jeffrey and D. Zwillinger, Academic Press, Oxford, 2007.
  7.  V. Kovalchuk, B. Gołubowska, and I.M. Mladenov, “Mechanics of infinitesimal test bodies on Delaunay surfaces: spheres and cylinders as limits of unduloids and their action-angle analysis”, J. Geom. Symmetry Phys. 53, 55–84, (2019).
  8.  V. Kovalchuk and I.M. Mladenov, “Mechanics of infinitesimal gyroscopes on Mylar balloons and their action-angle analysis”, Math. Meth. Appl. Sci. 43, 3040–3051 (2020).
  9.  J.J. Slawianowski and B. Golubowska, “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis. Classical, quasi-classical and quantum problems”, Geom. Integrability Quantization 16, 110–138 (2015).
  10.  G. De Matteis, L. Martina, C. Naya, and V. Turco, “Helicoids in chiral liquid crystals under external fields”, Phys. Rev. E 100, 05273- (1–12) (2019).
  11.  G. De Matteis, L. Martina, and V. Turco, “Waveguiding by helicoids in confined chiral nematics”, J. Instrum. 15, C05028-(1–11) (2020).
  12.  M. Toda, F. Zhang, and B. Athukorallage, “Elastic surface model for beta-barrels: geometric, computational, and statistical analysis”, Proteins 86, 35–42 (2018).
  13.  J.J. Sławianowski, V. Kovalchuk, B. Gołubowska, A. Martens, and E.E. Rożko, “Dynamical systems with internal degrees of freedom in non-Euclidean spaces”, IFTR Reports, IPPT PAN, 8/2006.
Go to article

Authors and Affiliations

Vasyl Kovalchuk
1
ORCID: ORCID
Barbara Gołubowska
1
ORCID: ORCID
Ivaïlo M. Mladenov
2
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  2. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 21, 1113 Sofia, Bulgaria

This page uses 'cookies'. Learn more