Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Indoor noise can greatly affect the health and comfort of users, so the significance of the right assessment of the compliance with the requirements is obvious. But noise level testing is carried out using different methods, which may not ensure consistency in assessments.
The paper presents the influence of test methods on measurement results determined based on an analysis of inter-laboratory comparative studies. The analyses presented in the paper apply to an equivalent sound pressure level determined for a permanent source of sound – an air-conditioning device. The test methods were characterised according to their precision. In order to compare them, their compatibility was analysed based on the methodology described in the literature, alongside a single-factor analysis of variance. It was determined that there were no grounds for rejecting the hypothesis about lack of statistical differences between the results obtained via different methods. Each of the methods is characterised by different precision, so consequently the same result obtained with each method carries a different risk in regards to noise assessment.
The reason for taking up this kind of research was the decision of the Polish Technical Committee in 2018 about introducing new acoustic requirements in Poland concerning the admissible indoor sound pressure levels. It was decided to implement new international methods of testing indoor sound pressure levels emanating from the service equipment in the building. It was necessary to show the differences between the current method and its new counterparts.
Go to article

Bibliography

1. Batko W.M., Stepien B. (2014), Type a standard uncertainty of long-term noise indicators, Archives of Acoustics, 39(1): 25–36, doi: 10.2478/aoa-2014-0004.
2. Berardi U. (2012), A comparison of measurement standard methods for the sound insulation of building façades, Building Acoustics, 19: 267–282, doi: 10.1260/1351-010X.19.4.267.
3. Czichos H., Saito T., Smith L. (2011), Springer Handbook of Metrology and Testing, Springer Berlin– Heidelberg, doi: 10.1007/978-3-642-16641-9.
4. Daszykowski M., Kaczmarek K., Vander Heyden Y., Walczak B. (2007), Robust statistics in data analysis – A review: basic concepts, Chemometrics and Intelligent Laboratory Systems, 85: 203–219, doi: 10.1016/J.CHEMOLAB.2006.06.016.
5. Di Bella A., Pontarollo C.M., Granzotto N., Remigi F. (2013), Interlaboratory test for field evaluation of noise from equipment in residential buildings, [in:] AIA-DAGA 2013 Merano, Merano, pp. 1880–1883.
6. EA-4/16 G:2003 (2003), EA guidelines on the expression of uncertainty in quantitative testing, EA, https://european-accreditation.org/publications/ea-4- 16-g/ (retrieved 18.01.2021).
7. Flores M., Fernández-Casal R., Naya S., Tarrío- Saavedra J., Bossano R. (2018), ILS: An R package for statistical analysis in interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 181: 11–20, doi: 10.1016/j.chemolab.2018.07.013.
8. ISO-10052 (2004), Acoustics – Field measurements of airborne and impact sound insulation and of service equipment sound – Survey method.
9. ISO-16032 (2004), Acoustics – Measurement of sound pressure level from service equipment in buildings – Engineering method.
10. ISO 13528 (2015), Statistical methods for use in proficiency testing by interlaboratory comparison.
11. ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.
12. Jagan K., Forbes A.B. (2019), Assessing interlaboratory comparison data adjustment procedures, International Journal of Metrology and Quality Engineering, 10: 1–8, doi: 10.1051/ijmqe/2019003.
13. JCGM 100:2008 (2008), Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM. 14. JCGM 106:2012 (2012), Evaluation of measurement data: The role of measurement uncertainty in conformity assessment, JCGM.
15. JCGM 200:2012 (2008), International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd ed., JCGM.
16. Kacker R.N., Kessel R., Sommer K.D. (2010), Assessing differences between results determined according to the guide to the expression of uncertainty in measurement, Journal of Resarch of the National Institute of Standards and Technology, 115: 453–459, doi: 10.6028/jres.115.031
17. Kessel R., Kacker R.N., Sommer K.D. (2011), Combining results from multiple evaluations of the same measurand, Journal of Resarch of the National Institute of Standards and Technology, 116: 809–820, doi: 10.6028/jres.116.023
18. Molenaar J., Cofino W.P., Torfs P.J.J.F. (2018), Efficient and robust analysis of interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 175: 65–73, doi: 10.1016/j.chemolab.2018.01.003
19. NIST/SEMATECH (2013), e-Handbook of Statistical Methods, Ch. 1.3.5.10, http://www.itl.nist.gov/div898/handbook/ (retrieved 12.08.2020).
20. PN-B-02151-02 (1987), Building acoustics – Noise protection of apartments in buildings – Permissible values of sound level in apartments [in Polish: Akustyka budowlana – Ochrona przed hałasem pomieszczen w budynkach – Dopuszczalne wartosci poziomu dzwieku w pomieszczeniach].
21. PN-B-02156 (1987), Building acoustics – Methods for measurement of sound power of A-level in buildings [in Polish: Akustyka budowlana – Metody pomiaru poziomu dzwieku A w budynkach].
22. Pozzer T., Wunderlich P., Monteneiro C., de Frias J. (2019), Interlaboratory and proficiency tests for field measurements in Brazil, [in:] INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 259, No. 1, pp. 8120–8130, Institute of Noise Control Engineering, http://www.sea-acustica.es/filead min/INTERNOISE_2019/Fchrs/Proceedings/2200.pdf.
23. Prezelj J., Murovec J. (2017), Traffic noise modelling and measurement: Inter-laboratory comparison, Applied Acoustics, 127: 160–168, doi: 10.1016/j.apacoust.2017.06.010.
24. Przysucha B., Batko W., Szelag A. (2015), Analysis of the accuracy of uncertainty noise measurement, Archives of Acoustics, 40(2): 183–189, doi: 10.1515/aoa-2015-0020.
25. Przysucha B., Szelag A., Pawlik P. (2020), Probability distributions of one-day noise indicators in the process of the type A uncertainty evaluation of longterm noise indicators, Applied Acoustics, 161: 107158, doi: 10.1016/j.apacoust.2019.107158.
26. Scamoni F. et al. (2009), Repeatability and reproducibility of field measurements in buildings, [in:] Proceedings of 8th European Conference on Noise Control 2009, EuroNoise09, Edinburgh, Scotland, UK, 26–28 October, 2009.
27. Scrosati C. et al. (2015), Uncertainty of faqade sound insulation measurements obtained by a round robin test: The influence of the low frequencies extension, [in:] Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, pp. 12– 16.
28. Scrosati C. et al. (2020), Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An Inter-Laboratory Test, Applied Acoustics, 165: 107298, doi: 10.1016/j.apacoust.2020.107298
29. Seddeq H.S., Medhat A.A. (2011), Indoor noise measurements evaluations for HVAC-Unit using interlaboratory comparisons, International Journal of Metrology and Quality Engineering, 2(2): 75–81, doi: 10.1051/ijmqe/2011104
30. Szewczak E., Bondarzewski A. (2016), Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?, Accreditation and Quality Assurance, 21(2): 91–100, doi: 10.1007/s00769-016-1195-y.
31. Trzpiot G. (2015), Some remarks of type III error for directional two-tailed test, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 219: 5–16.
32. Walker W.E. et al. (2003), Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support, Integrated Assessment, 4(3): 5–17, doi: 10.1076/iaij.4.1.5.16466
33. Wszolek T. (2006), Effect of traffic noise statistical distribution on LAeq;T measurement uncertainty, Archives of Acoustics, 31(3): 311–318.
Go to article

Authors and Affiliations

Elżbieta Nowicka
1
Ewa Szewczak
1

  1. Building Research Institute, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article looks at the characters and types of narration in Michał Czajkowski's Dziwne życia Polaków i Polek [ Strange Lives of Poles and Polish Women]. Published in 1865, the book is a collection of biographical essays recounting in vivid detail the real-life stories of Polish noblemen from the Ukraine caught in the power games of the Ottoman and the Russian Empire in the early 19th-century. Czajkowski makes no direct references to Cervantes, but at one point calls his bunch knight errants, insisting that Poland produced more of them than any country in the world. Elsewhere he counterpoints earthy realism and (mock)epic decorum, fact and literary invention ('dzieje bajeczne') because they both make up the life of Antoni Iliński vel Iskender Pasha. Inspired by Joachim Lelewel's 1820 comparative study Historyczna paralela Hiszpanii z Polską w wieku XVI, XVII, XVIII [ A Historical Parallel between Spain and Poland in the 16th, 17th, and 18th Century] the article tries to trace such covert links or echoes of Cervantes in Czajkowski's handling of his maverick heroes.
Go to article

Authors and Affiliations

Elżbieta Nowicka
1
ORCID: ORCID

  1. Instytut Filologii Polskiej UAM w Poznaniu

This page uses 'cookies'. Learn more