Search results

Filters

  • Journals
  • Keywords
  • Date
  • Type

Search results

Number of results: 967
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The object of the present study is to investigate the influence of damping uncertainty and statistical correlation on the dynamic response of structures with random damping parameters in the neighbourhood of a resonant frequency. A Non-Linear Statistical model (NLSM) is successfully demonstrated to predict the probabilistic response of an industrial building structure with correlated random damping. A practical computational technique to generate first and second-order sensitivity derivatives is presented and the validity of the predicted statistical moments is checked by traditional Monte Carlo simulation. Simulation results show the effectiveness of the NLSM to estimate uncertainty propagation in structural dynamics. In addition, it is demonstrated that the uncertainty in damping indeed influences the system response with the effects being more pronounced for lightly damped structures, higher variability and higher statistical correlation of damping parameters.

Go to article

Authors and Affiliations

B. Tiliouine
B. Chemali
Download PDF Download RIS Download Bibtex

Abstract

Compared to other European countries, Poland has scarce drinking water resources and exhibits

significant variation in annual runoff. On the other hand, the geothermal water resources present in sedimentary/structural basins, mostly in the Polish Lowlands and the Podhale geothermal system, not only provide a

valuable source of renewable energy, which is utilized, although only to a limited extent, but can also be used

for many other purposes. The paper presents the results of studies related to the desalination of low dissolved

mineral content geothermal waters from the Bańska IG-1 well using a dual hybrid system based on ultrafiltration and reverse osmosis. The desalination of geothermal waters may be considered a possible solution leading

to the decentralization of drinking water supply. In many cases, using cooled waters for drinking purposes may

be considered an alternative method of disposing of them, in particular for open drain arrangements, i.e. where

cooled water is dumped into surface waters.

Go to article

Authors and Affiliations

B. Tomaszewska
Download PDF Download RIS Download Bibtex

Abstract

Zinc (II) removal using low-cost sorbents requires a proper process parametric study to determine

its optimal performance characteristics. In this respect, the present study proposes a new modeling and simulation procedure for heavy metal removal system and is carried out to optimize input variables such as initial pH,

adsorbent dosage, and contact time for biosorption of Zinc (II) by using bentonite. The proposed experimental

system is cost-effective and requires less calculation for determining optimal values, i.e., input variables and

their related removal capacity, Rem%. To optimize the adsorption process, cubic spline curve fitting and numerical differentiation techniques are used for required calculations. According to the proposed calculations, the

removal capacity is calculated as 98.66%, while the optimal values are calculated as initial pH – 6.76, adsorbent

dosage – 1.14 g L-1, contact time – 13 minutes. To evaluate the results, full factor experimental design and 3 way

ANOVA test are used for comparison.

Go to article

Authors and Affiliations

B. Mesci
Download PDF Download RIS Download Bibtex

Abstract

The principle of work of many metallurgical shaft furnaces is based on the flow of reaction gas through the descending packed bed composed of metallurgical materials. Hot gases flow up the shaft furnace through the column of materials, give their heat to the descending charge materials. At the same time due to their reducing nature they interact chemically, causing the reduction of oxides inside the charge. In real conditions, during the course of the process, the powder is generated, the source of which is the batch materials or it is introduced into the as part of the process procedure. The powder in the form of thin slurry is carried by the stream of flowing gas. Such multiphase flow might considerably affect the permeability of the charge due to the local holdup of powder. The holdup of solid phase in packed beds of metallurgical shaft furnaces leads to radial changes in bed porosity. Radial changes in bed porosity uneven gas flow along the radius of the reactor and negatively affect the course and efficiency of the process. The article describes the model studies on radial distribution of carbon powder holdup in the packed bed composed of metallurgical materials. The powder was divided into fractions – “static” and “dynamic”. Large diversity of carbon powder distribution was observed in the function of the radius of reactor in relation to the bed type, apparent velocity of gas carrying powder and the level of bed height.
Go to article

Authors and Affiliations

B. Panic
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the influence of annealing time 30, 60 and 120 min at 1000°C for quenching CuAl7Fe5Ni5W2Si2 bronze in 10% water solution of NaCl, on the microstructure and mechanical properties. The presented results concern the species newly developed aluminum-iron-nickel bronze, with additions W and Si. In order to determine changes in the microstructure of the hardened bronze metallographic studies were performed on cylindrical samples of diameter 10 mm, on the metallographic microscope with digital image analysis, X-ray phase analysis, EDX point with the digital recording on the computer. Specified percentage of the microstructure of martensite and bainite, participation of proeutectoid α phase in the microstructure, grain size of former β phase, the amount of dissolved κ phase. It was found that in the microstructure of bronze in the cast state, there are a number of intermetallic phases of κ type. At interphase boundaries of primary intermetallic faceted precipitates, especially rich in tungsten (IM_W), nucleate and grow dendritic primary intermetallic κI phases, with chemical composition similar to the type of Fe3Si iron silicide. Dissolved, during the heating, in the β phase are all the intermediate phase included in the microstructure, with the exception of primary intermetallic phases of tungsten and κI. Prolongation of the isothermal annealing causes coagulation and coalescence of primary phases. In microstructure of the bronze after quenching obtained the α phase precipitation on the grain boundary of secondary β phase, coarse bainite and martensite, for all annealing times. With the change of annealing time are changed the relative proportions of individual phases or their systems, in the microstructure. In the microstructure of bronze, hold at temperature of 1000°C for 60 min, after quenching martensitic microstructure was obtained with the primary phases, and the least amount of bainite

Go to article

Authors and Affiliations

B. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

Mathematical description of alloys solidification in a macro scale can be formulated using the one domain method (fixed domain approach). The energy equation corresponding to this model contains the parameter called a substitute thermal capacity (STC). The analytical form of STC results from the assumption concerning the course of the function fS = fS (T) describing the changes of solid state volumetric fraction and the temperature at the point considered. Between border temperatures TS , TL the function fS changes from 1 to 0. In this paper the volumetric fraction fS (more precisely fL = 1- fS ) is found using the simple models of macrosegregation (the lever arm rule, the Scheil model). In this way one obtains the formulas determining the course of STC resulting from the certain physical considerations and this approach seems to be closer to the real course of thermal processes proceeding in domain of solidifying alloy.

Go to article

Authors and Affiliations

B. Mochnacki
Download PDF Download RIS Download Bibtex

Abstract

An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratory conditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing) at 1060°C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel. The Cr content decrease, in ferritic-austenitic cast steels (duplex), from 24-26%Cr to 18% leads to the changes of the castings microstructure and eliminating of a brittle σ phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.
Go to article

Authors and Affiliations

B. Kalandyk
Download PDF Download RIS Download Bibtex

Abstract

Semiconductive - resistive sensors of toxic and explosive gases were fabricated from nanograins of SnO2 using thick-.lm technology. Sensitivity, selectivityand stabilityof sensors working in di.erent temperature depend on the way the tin dioxide and additives were prepared. A construction also plays an important role. The paper presents an attitude towards the evaluation of transport of electrical charges in semiconductive grain layer of SnO2, when dangerous gases appear in the surrounding atmosphere.

Go to article

Authors and Affiliations

B. Licznerski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents Gupta's relational decomposition technique expanded on linguistic level. It allows to reduce the hardware cost of the fuzzy system or the computing time of the final result, especially when referring to First Aggregation Then Inference (FATI) relational systems or First Inference Then Aggregation (FITA) rule systems. The inference result of the hierarchical system using decomposition technique is more fuzzy than of the classical system. The paper describes a linguistic decomposition technique based on partitioning the knowledge base of the fuzzy inference system. It allows to decrease or even totally remove a redundant fuzziness of the inference result.

Go to article

Authors and Affiliations

B. Wyrwoł

This page uses 'cookies'. Learn more