Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental studies on boiling heat transfer in rectangular minichannels. The investigations focus on the transition from single phase forced convection to nucleate boiling, i.e., in the zone of boiling incipience. The experiment has been carried out with FC-72, R-123 and R-11 at the Reynolds number below 4700, corresponding to mass flow rate range 95-710 kg/(m s). The main part of the test section is a minichannel of pre-set depth from 0.7 to 2 mm and width (20, 40 and 60 mm), with different spatial orientations from vertical to horizontal and 30% inclination angle adjustment. The objective of the paper includes the impact of selected parameters (liquid flow velocity, pressure and inlet liquid subcooling, channel dimensions and spatial orientation) on the boiling incipience in minichannels. The investigations are intended to develop a correlation for the calculations of the Nusselt number under the conditions of boiling incipience in the minichannel as a function of changeable parameters.
Go to article

Authors and Affiliations

Magdalena Piasecka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of liquid crystal thermography for temperature determination and visualisation of two phase flow images on the studied surface. Properties and applications of thermochromic liquid crystals are discussed. Liquid crystals were applied for two-dimensional detection of the temperature of the heating foil forming one of the surfaces of the minichannel along which the cooling liquid flowed. The heat flux supplied to the heating surface was altered in the investigation and it was accompanied by a change in the color distribution on the surface. The accuracy of temperature measurements on the surface with liquid crystal thermography is estimated. The method of visualisation of two-phase flow structures is described. The analysis of monochrome images of flow structures was employed to calculate the void fraction for some cross-sections. The flow structure photos were processed using Corel graphics software and binarized. The analysis of phase volumes employed Techsystem Globe software. The measurement error of void fraction is estimated.

Go to article

Authors and Affiliations

Magdalena Piasecka
Download PDF Download RIS Download Bibtex

Abstract

Miniature heat exchangers are used to provide higher cooling capacity for new technologies. This means a reduction in their size and cost but the identical power. The paper presents the method for determination of boiling heat transfer coefficient for a rectangular minichannel of 0.1 mm depth, 40 mm width and 360 mm length with asymmetric heating. Experimental research has focused on the transition from single phase forced convection to nucleate boiling, i.e., the zone of boiling incipience. The ‘boiling front’ location has been determined from the temperature distribution of the heated wall obtained from liquid crystal thermography. The experiment has been carried out with R-123, mass flux 220 kg/(m2s), pressure at the channel inlet 340 kPa. Local values of heat transfer coefficient were calculated on the basis of empirical data from the experiment following the solution of the two-dimensional inverse heat transfer problem. This problem has been solved with the use of the finite element method in combination with Trefftz functions. Temperature approximates (linear combinations of Trefftz functions) strictly fulfill the governing equations. In presented method the inverse problem is solved in the same way as the direct problem. The results confirmed that considerable heat transfer enhancement takes place at boiling incipience in the minichannel flow boiling. Moreover, under subcooling boiling, local heat coefficients exhibit relatively low values.

Go to article

Authors and Affiliations

Magdalena Piasecka
Beata Maciejewska
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the complex issues related to 19th-century reproductive prints. Its starting point is the oeuvre of Feliks Stanisław Jasiński, a Polish engraver who was mainly active in France. He specialized in reproductive prints of works of art, and is a relatively well- -known and researched figure in the history of Polish graphic arts. Outlining the context for his activities also becomes a contribution to reflections on the place of reproductive prints in 19th century artistic culture, as well as an attempt to define a framework for considering this type of graphic production. In citing various examples of modern reproductive graphics, its diversity is proven. Theses on the primacy of the criterion of “fidelity” and technological determination in the history of reproduction are rejected. Instead, the complex links between this field and various aspects of artistic culture are pointed out. Particular emphasis is placed on the links between the functions, form and production methods of such prints. Chief consideration is given to the type of reproductive graphics made by using traditional metal techniques, which apart from their informative functions, also performed important artistic functions, as evidenced by the described phenomena occurring within this field in the second half of the 19th century, and the accompanying written tradition, formed since the 18th century.
Go to article

Authors and Affiliations

Katarzyna Ubysz-Piasecka
1

  1. Uniwersytet Warszawski
Download PDF Download RIS Download Bibtex

Abstract

The artificially made kernels from ground wheat grain, commercial wheat starch and wheat proteinaceous a-amylase inhibitors in different proportions were used as feed for adults of the granary weevil iSitophilus granarius L.). In the case of larvae of the confused flour beetle (Tribolium con/usum Duv.) and the Mediterranean flour moth (Anagasta kuehniella Zell.) the friable feed mixture were used. The survival of S. granarius adults has not been correlated with the soluble proteins extracted from wheat and amylolytic activity located in this protein fraction. On the other hand the weight of dust (the index of feeding intensity) produced during feeding has depended on the presence of a-amylase and trypsin inhibitors in wheat-based feed. A. kuehniella larvae have not developed at all on feed consisted of 50% wheat starch and 50% of crude a-amylase inhibitors from wheat. The same feed has caused 15.1 days of extension in development time of T. confusum larvae. It attests to specific native enzymatic apparatus existing in alimentary canals of three damaging grain species which can overcome some obstacles even if extremely highly active insect a-amylase inhibitors were present in feed. However, the sufficient nutrient should be available in feed compounds. Nevertheless, some reduction of insects population can be expected.
Go to article

Authors and Affiliations

Jerzy R. Warchalewski
Justyna Gralik
Zbigniew Winiecki
Jan Nawrot
Dorota Piasecka-Kwiatkowska
Download PDF Download RIS Download Bibtex

Abstract

Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.

Go to article

Authors and Affiliations

Piotr Oramus
Tomasz Chmielewski
Tomasz Kuczek
Wojciech Piasecki
Marcin Szewczyk
Download PDF Download RIS Download Bibtex

Abstract

As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.
Go to article

Authors and Affiliations

Konrad Chabowski
Tomasz Piasecki
Andrzej Dzierka
Karol Nitsch
Download PDF Download RIS Download Bibtex

Abstract

The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.

Go to article

Authors and Affiliations

Konrad Chabowski
Adam F. Junka
Tomasz Piasecki
Damian Nowak
Karol Nitsch
Danuta Smutnicka
Marzenna Bartoszewicz
Magdalena Moczała
Patrycja Szymczyk

This page uses 'cookies'. Learn more