Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Celem artykułu jest próba identyfikacji oraz oceny stopnia wpływu najważniejszych czynników kształtujących ceny ropy naftowej WTI. Podjęcie takiej tematyki stanowi nawiązanie do dyskusji prowadzonych przez innych badaczy rynku na łamach światowej literatury oraz podejmowanych przez nich prób określenia przyczyn silnych wahań cen surowca z lat 2007–2009. Z jednej strony w okresie tym obserwowano silne fluktuacje wielkości popytu na ropę naftową, tj. w latach 2000–2007 odnotowano ponadprzeciętny wzrost zapotrzebowania na surowiec (szczególnie w krajach azjatyckich), by w okresie kryzysu finansowego obserwować jego nagły spadek. Rosnący popyt i ceny surowca wpłynęły na zwiększenie przez firmy wydobywcze nakładów na rozpoznanie nowych złóż, czego wynikiem jest obserwowany na terenie Ameryki Północnej po 2013 roku silny wzrost wydobycia ze złóż niekonwencjonalnych. Z drugiej strony początek XXI wieku przyniósł rekordowy wzrost obrotu instrumentami finansowymi opartymi na cenach ropy naftowej. W pierwszej części artykułu zaprezentowano przegląd najważniejszych prac empirycznych w obszarze będącym przedmiotem pracy. Weryfikacja postawionego problemu badawczego opierała się na przeprowadzonej analizie kointegracji z wykorzystaniem metody Johansena oraz w drugim kroku estymacji modelu korekty błędem. Próba, na podstawie której dokonano oszacowania, to lata 2002–2014, a więc uwzględniono szczególnie istotny dla historii handlu ropą naftową okres tzw. trzeciego szoku cenowego z lat 2007–2008. Otrzymane rezultaty pozwalają wnioskować, że wpływ na procesy cenotwórcze na rynku czarnego złota mają zarówno czynniki popytowo-podażowe, jak i te związane z obrotem kontraktami terminowymi na ropę naftową. Co ważne, determinanty z pierwszej kategorii, a więc te o charakterze fundamentalnym, silniej rzutują na kształtowanie się cen. Dodatkowo można przypuszczać, że wzrost liczby transakcji futures zawieranych przez podmioty utożsamiane ze spekulacyjnymi (niezwiązane bezpośrednio z przedmiotowym rynkiem) może wpływać destabilizująco na zmiany cen ropy naftowej.
Go to article

Authors and Affiliations

Robert Socha
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study is to discuss the relationship of the crude oil price, speculative activity and fundamental factors. An empirical study was conducted with a VEC model. Two cointegrating vectors were identified. The first vector represents the speculative activity. We argue that the number of short non-commercial positions increases with the crude oil stock and price, decreases with the higher number of long non-commercial positions. A positive trend of crude oil prices may be a signal for traders outside the industry to invest in the oil market, especially as access to information could be limited for them. The second vector represents the crude oil price under the fundamental approach. The results support the hypothesis that the crude oil price is dependent on futures trading. The higher is a number of commercial long positions, the greater is the pressure on crude oil price to increase.

Go to article

Authors and Affiliations

Robert Socha
Piotr Wdowiński
Download PDF Download RIS Download Bibtex

Abstract

The article presents the method of magnetron sputtering for the deposition of conductive emitter coatings in semiconductor structures. The layers were applied to a silicon substrate. For optical investigations, borosilicate glasses were used. The obtained layers were subjected to both optical and electrical characterisation, as well as structural investigations. The layers on silicon substrates were tested with the four-point probe to find the dependence of resistivity on the layer thickness. The analysis of the elemental composition of the layer was conducted using a scanning electron microscope equipped with an EDS system. The morphology of the layers was examined with the atomic force microscope (AFM) of the scanning electron microscope (SEM) and the structures with the use of X-ray diffraction (XRD). The thickness of the manufactured layers was estimated by ellipsometry. The composition was controlled by selecting the target and the conditions of the application, i.e. the composition of the plasma atmosphere and the power of the magnetrons. Based on the obtained results, this article aims to investigate the influence of the manufacturing method and the selected process parameter on the optical properties of thin films, which should be characterised by the highest possible value of the transmission coefficient (>85–90%) and high electrical conductivity.
Go to article

Bibliography

  1.  L. Żukowska, J. Mikuła, M. Staszuk, and M. Musztyfaga-Staszuk, “Structure And Properties Of PVD Coatings Deposited On Cermets,” Arch. Metall. Mater., vol. 60, no. 2, pp. 727–733, 2015, doi: 10.1515/amm-2015-0198.
  2.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloys substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. 137549, 2021 (in print), doi: 10.24425/bpasts.2021.137549.
  3.  Y.-S. Cho, M. Han, and S. H. Woo, “Electrospinning of Antimony Doped Tin Oxide Nanoparticle Dispersion for Transparent and Conductive Films,” Arch. Metall. Mater., vol. 65, no. 4, pp.  1345–1350, 2020, doi: 10.24425/amm.2020.133697.
  4.  R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance,” Nat. Commun., vol. 7, pp. 13771, 2016, doi: 10.1038/ncomms13771.
  5.  M. Kuc et al., “ ITO layer as an optical confinement for nitride edge-emitting lasers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, 2020, doi: 10.24425/bpasts.2020.131834.
  6.  Y. Cui and C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, vol. 291, pp. 851–853, 2001, doi: 10.1126/science.291.5505.851.
  7.  J. Kryłow, J. Oleński, Z. Sawicki, and A. Tumański, “Doping of semiconductors, Technological processes in semiconductor electronics,” Scientific and Technical Publishing House, Warsaw 1980 [in Polish].
  8.  Ş. Ţălu, S. Kulesza, M. Bramowicz, K. Stępień and D. Dastan, “Analysis of the Surface Microtexture of Sputtered Indium Tin Oxide Thin Films,” Arch. Metall. Mater., vol. 66, no. 2, pp.  443–450, 2021, doi: 10.24425/amm.2021.135877.
  9.  Y.S. Hsu and S.K. Gandhi, “The Effect of Phosphorus Doping on Tin Oxide Films Made by the Oxidation of Phosphine and Tetramethyltin II. Electrical Properties J. Electrochem. Soc. II,” Sol. State Sci. Technol., vol. 127, p. 1592, 1980.
  10.  T. Nakahara and H. Koda, Chemical Sensor Technology. Ed., N. Emazoe,” Elsevier, New York, 1991, vol. 3, p. 19.
  11.  S.-J. Hong, S.-H. Song, B.J. Kim, J.-Y. Lee, and Y.-S Kim, “ITO Nanoparticles Reused from ITO Scraps and Their Applications to Sputtering Target for Transparent Conductive Electrode Layer,” Nano Converg., vol. 4, no 23, p. 23, 2017.
  12.  Q. Li, E. Gao, and A.X. Wang, “Ultra-Compact and Broadband Electro-Absorption Modulator Using an Epsilon-near-Zero Conductive Oxide,” Photonics Res., vol. 6, no. 4, pp. 277–281, 2018, doi: 10.1364/PRJ.6.000277.
  13.  K. Ellmer, “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes,” Nat. Photonics, vol. 6, pp. 809–817, 2012, doi: 10.1038/nphoton.2012.282.
  14.  Q. Li et al., “3D ITO-Nanowire Networks as Transparent Electrode for All-Terrain Substrate,” Sci. Rep., vol.  9, no. 4983, 2019.
  15.  C. Guillén and J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates,” Thin Solid Films, 480–481, pp. 129–132, 2005, doi: 10.1016/j.tsf.2004.11.040.
  16.  C. Guillén and J. Herrero, “Polycrystalline growth and recrystallisation process in sputtering ITO thin films,” Thin Solid Films, vol. 510, pp. 260–264, 2006.
  17.  H. Morikawa and M. Fujita, “Crystallisation and electrical property change on the annealing of amorphous indium-oxide and indium tin oxide films,” Thin Solid Films, vol. 359, pp. 61–67, 2000.
  18.  F. Kurdesau, G. Khripunov, A.F da Cunha, M Kaelin, and A.N Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature,” J. Non-Crystall. Solids, vol. 352, pp. 1466–1470, 2006, doi: 10.1016/j.jnoncrysol.2005.11.088.
  19.  C.L. Tien, H.Y. Lin, C.K. Chang, and C.J. Tang, “Effect of Oxygen Flow Rate on the Optical, Electrical, and Mechanical Properties of DC Sputtering ITO Thin Films,” Adv. Condens. Matter Phys., 2019, p. 2647282, 2019.
  20.  J. Txintxurreta, E. G-Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, and J. Barriga, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol. 11, p.  92, 2021, doi: 10.3390/coatings11010092.
  21.  R.K. Tyagi, P. Saxena, A. Vashisth, and S. Mehndiratta, “PVD based thin film deposition methods and characterisation/ property of different compositional coatings- a critical analysis,” Materials Today: Proceedings 2nd International Conference, vol.  38, pp. 259–264, 2020.
  22.  P. Sawicka-Chudy et al., “Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices, AIP Advances, vol. 9, p. 055206, 2019, doi: 10.1063/1.5093037.
  23.  B. Wicher et al., “Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering,” Arch. Metall. Mater., vol. 63, no. 3, pp. 1339–1344, 2018, doi: 10.24425/123809.
  24.  L.J. Meng, E. Liang, J. Gao, V. Teixeira, and M.P. dos Santos, “Study of indium tin oxide thin films deposited on acrylics substrates by ion beam assisted deposition technique,” J. Nanosci. Nanotechnol., vol. 9, pp. 4151–4155, 2009, doi: 10.1166/jnn.2009.m24.
  25.  J.C. Manifacier, M. De Murcia, J.P. Fillard, and E. Vicario, “Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure,” Thin Solid Films, vol. 41, pp. 127–144, 1977.
  26.  M. Iftikhar, I.M. Ali, and M.A. Al-Jenabi, “Structural and Optical Properties of In2O3 and Indium Tin Oxide Thin Films,” J. Unive. Anbar Pure Sci., vol. 11, no.1, pp.  39–46, 2017.
  27.  H. Kim et al., “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl. Phys., vol. 86, pp. 6451–6461, 1999, doi: 10.1063/1.371708.
  28.  N. Nosidlak, “Application of polymer systems as materials in photovoltaic cells and electroluminescent diodes”. PhD Thesis, Krakow 2013.
  29.  L.F.J. Piper et al., “In2O3 is found about 2.8 eV below the Fermi level,” Appl. Phys. Lett., vol. 94, p. 022105, 2009.
Go to article

Authors and Affiliations

Małgorzata Musztyfaga-Staszuk
1
Dušan Pudiš
2
Robert Socha
3
Katarzyna Gawlińska-Nęcek
4
Piotr Panek
4

  1. Silesian University of Technology, Welding Department, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Faculty of Faculty of Electrical Engineering and Information Technology, Department of Physics, Zilina, Slovakia
  3. Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
  4. Institute of Metallurgy and Materials Science PAS, ul. Reymonta 25, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more