Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Expressing head-related transfer functions (HRTFs) in the spherical harmonic (SH) domain has been thoroughly studied as a method of obtaining continuity over space. However, HRTFs are functions not only of direction but also of frequency. This paper presents an extension of the SH-based method, utilizing hyperspherical harmonics (HSHs) to obtain an HRTF representation that is continuous over both space and frequency. The application of the HSH approximation results in a relatively small set of coefficients which can be decoded into HRTF values at any direction and frequency. The paper discusses results obtained by applying the method to magnitude spectra extracted from exemplary HRTF measurements. The HRTF representations based on SHs and HSHs exhibit similar reproduction accuracy, with the latter one featuring continuity over both space and frequency and requiring much lower number of coefficients. The developed HSH-based continuous functional model can serve multiple purposes, such as interpolation, compression or parametrization for machine-learning applications.
Go to article

Authors and Affiliations

Adam Szwajcowski
1

  1. Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Precise measurement of the sound source directivity not only requires special equipment, but also is time-consuming. Alternatively, one can reduce the number of measurement points and apply spatial interpolation to retrieve a high-resolution approximation of directivity function. This paper discusses the interpolation error for different algorithms with emphasis on the one based on spherical harmonics. The analysis is performed on raw directivity data for two loudspeaker systems. The directivity was measured using sampling schemes of different densities and point distributions (equiangular and equiareal). Then, the results were interpolated and compared with these obtained on the standard 5° regular grid. The application of the spherical harmonic approximation to sparse measurement data yields a mean error of less than 1 dB with the number of measurement points being reduced by 89%. The impact of the sparse grid type on the retrieval error is also discussed. The presented results facilitate optimal sampling grid choice for low-resolution directivity measurements.
Go to article

Authors and Affiliations

Adam Szwajcowski
1
Daniel Krause
2
Anna Snakowska
1

  1. Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
  2. Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland

This page uses 'cookies'. Learn more