Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Reaction kinetics of acetic anhydride hydrolysis reaction is being studied at a fixed reaction temperature and ambient pressure using an isoperibolic reaction calorimeter. Temperature versus time data along with heat and mass balance is used to determine the kinetics parameters i.e. activation energy and Arrhenius coefficient. It has been studied with the varying volumetric ratio of acetic anhydride and water; and kinetics parameters were compared and plotted for each ratio. Such a study has not been done previously to determine the kinetics dependency on varying the acetic anhydride water ratio. As the acetic anhydride hydrolysis reaction is exothermic in nature, the present study will help to decide the safe and suitable operating conditions such as concentration and temperature for conducting this reaction at plant scale. The kinetic data presented can be used further for the mathematical modeling and simulation of such exothermic hydrolysis reactions.
Go to article

Authors and Affiliations

Rajendra Kumar
1
Anurag Kumar Tiwari
2

  1. Council of Scientific and Industrial Research – National Chemical Laboratory, Chemical Engineering and Process Development Division, Pune, India – 411008
  2. Dr B R Ambedkar National Institute of Technology, Department of Chemical Engineering, Jalandhar, Punjab, India – 144011
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present study was to explore the influence of aiding buoyancy on mixed convection heat transfer in power-law fluids from an isothermally heated unconfined square cylinder. Extensive numerical results on drag coefficient and surface averaged values of the Nusselt number are reported over a wide range of parameters i.e. Richardson number, 0.1 ≤ Ri ≤ 5, power-law index, 0.4 ≤ n ≤ 1.8, Reynolds number, 0.1 ≤ Re ≤ 40, and Prandtl number, 1 ≤ Pr ≤ 100. Further, streamline profiles and isotherm contours are presented herein to provide an insight view of the detailed flow kinematics.
Go to article

Authors and Affiliations

Pragya Mishra
1
Lubhani Mishra
2
Anurag Kumar Tiwari
3

  1. Chaitanya Bharathi Institute of Technology, Department of Chemical Engineering, Hyderabad, Telangana 500075, India
  2. The University of Texas at Austin, Walker Department of Mechanical & Material Science Engineering, Texas Materials Institute, Austin, TX 78705, USA
  3. National Institute of Technology Jalandhar, Department of Chemical Engineering, Jalandhar, Punjab 144011, India
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90°). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45°) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45° orientation of the cylinder for new applications.
Go to article

Authors and Affiliations

Jaspinder Kaur
1
Jatinder Kumar Ratan
1
Anurag Kumar Tiwari
1

  1. Dr B.R. Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer in steady free convection from differentially heated cylinders enclosed in a rectangular duct filled with Bingham plastic fluids has been solved numerically for the ranges of the dimensionless groups as, Rayleigh number, 10 2 ≤ Ra ≤ 10 6; Prandtl number, 10 ≤ Pr ≤ 100 and, Bingham number, 0 ≤ Bn ≤ 50 for aspect ratios AR = 0.5, 0.6, 0.7, 0.8, 0.9 and 2. The streamlines, isotherm contours, yield surfaces, local and average Nusselt numbers were analysed and discussed. It is found that as the aspect ratio of the enclosure increases from 0.5 to 0.9, the average Nusselt number on the surface of the hot cylinder increases as a larger amount of fluid takes part in convection. Moreover, at sufficiently large Bingham numbers, yield stress forces dominate over buoyancy causing the flow to cease and thus the Nusselt number approaches its conduction limit. Finally, the Nusselt number approaches its conduction limit once the maximum Bingham number is reached.
Go to article

Authors and Affiliations

Ashok Kumar Baranwal
1
Anoop Kumar Gupta
2
Anurag Kumar Tiwari
3
Roderick Melnik
4 5

  1. Department of Chemical Engineering, BIT Sindri, Dhanbad 828123, India
  2. Department of Chemical and Biochemical Engineering, IIT Patna 801106, India
  3. Department of Chemical Engineering, NIT Jalandhar 144011, India
  4. Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada
  5. BCAM Basque Center for Applied Mathematics, Bizkaia, Spain

This page uses 'cookies'. Learn more