Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water vapour radiometers (WVR) provide information about temperature and humidity in the troposphere, with high temporal resolution when compared to the radiosonde (RS) observations. This technique can provide an additional reference data source for the zenith tropospheric delay (ZTD) estimated with the use of the Global Navigation Satellite System (GNSS). In this work, the accuracy of two newly installed radiometers was examined by comparison with RS observations, in terms of temperature (T), absolute humidity (AH), and relative humidity (RH), as well as for the ZTD. The impact of cloud covering and heavy precipitation events on the quality of WVR measurements was investigated. Also, the WVR data were compared to the GNSS ZTD estimates. The experiment was performed for 17 months during 2020 and 2021. The results show agreement between RS and WVR data at the level of 2◦C in T and 1 gm-3 in AH, whereas for RH larger discrepancies were noticed (standard deviation equal to 21%). Heavy precipitation increases WVR measurement errors of all meteorological parameters. In terms of ZTD, the comparison of WVR and RS techniques results in bias equal to –0.4 m and a standard deviation of 7.4 mm. The largest discrepancies of ZTD were noticed during the summer period. The comparison between the GNSS and WVR gives similar results as the comparison between the GNSS and RS (standard deviation 7.0–9.0 mm).
Go to article

Bibliography

Bauer, H.-S.,Wulfmeyer, V., Schwitalla, T. et al. (2011). Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A: Dynamic Meteorology and Oceanography, 63, 263–282. DOI: 10.1111/j.1600-0870.2010.00489.x.
Bengtsson, L. (2010). The global atmospheric water cycle. Environ. Res. Lett., 5, 202. DOI: 10.1088/1748-9326/5/2/025202.
Bennitt, G.V. and Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models. Mon. Weather Rev., 140, 2706–2719. DOI: 10.1175/MWR-D-11-00156.1.
Bevis, M., Businger, S., Chiswell, T.A. et al. (1994). Gps meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. Climatol., 33 (3), 379–386. DOI: 10.1175/1520-0450(1994)0330379:GMMZWD>2.0.CO;2.
Bock, O., Bosser, P., Pacione, R. et al. (2016). A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period. Q. J. R. Meteorol. Soc., 142, 56–71. DOI: 10.1002/qj.2701.
Böhm, J. and Schuh, H. (2013). Atmospheric effects in space geodesy. Springer. DOI: 10.1007/978-3-642-36932-2S.
Boniface, K., Ducrocq, V., Jaubert, G. et al. (2009). Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Ann. Geophys., 27, 2739–2753. DOI: 10.5194/angeo-27-2739-2009.
Brenot, H., Rohm, W., Kaˇcmaˇrík, M. et al. (2020). Cross-Comparison and methodological improvement in GPS tomography. Remote Sens., 12(1), 30. DOI: 10.3390/rs12010030.
Buehler, S., Östman, S., Melsheimer, C. et al. (2012). A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chem. Phys., 12, 10925–10943. DOI: 10.1.1.662.8109.
Churnside, J.H., Stermitz, T.A., and Schroeder, J.A. (1994). Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data. J. Atmos. Ocean Technol., 11(1).
Crewell, S., and Lohnert, U. (2007). Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans.Geosci.Remote Sens., 45(7), 2195–2201. DOI: 10.1109/TGRS.2006.888434.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS Software Version 5.2. User manual, Astronomical Institute. Universtiy of Bern: Bern Open Publishing.
Dai, A., Wang, J., Ware, R.H. et al. (2002). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Ress: Atmos., 107, ACL-11. DOI: 10.1029/2001JD000642.
Dymarska, N., Rohm, W., Sierny, J. et al. (2017). An assessment of the quality of near-real time GNSS observations as a potential data source for meteorology. Meteorol. Hydro. Water Managem. Res. Operational Applications, 5, 3–13. DOI: 10.26491/mhwm/65146.
Emardson, T.R., Johansson J.M., and Elgered G. (2000). The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans. Geosci. Remote Sens., 38, 324–329. DOI: 10.1109/36.823927.
Ferraro, R.R., Kusselson, S.J., and Colton, M. (1998). An introduction to passive microwave remote sensing and its applications to meteorological analysis and forecasting. Polarization, 1(2). DOI: 10.1.1.662.8109.
Ferreira, J.A., Liberato, M.L., and Ramos, A.M. (2016). On the relationship between atmospheric water vapour transport and extra-tropical cyclones development. Phys. Chemis. Earth, Parts A/B/C, 94, 56–65. DOI: 10.1016/j.pce.2016.01.001.
Frate, F.D. and Schiavon, G. (1998). A combined natural orthogonal functions/neural network technique for the radiometric estimation of atmospheric profiles. Radio Sci., 33, 405–410. DOI: 10.1029/97RS02219.
Gradinarsky, L., Johansson, J., Bouma, H. et al. (2002). Climate monitoring using GPS. Phys. Chemis. Earth, Parts A/B/C, 27, 335–340. DOI: 10.1016/S1474-7065(02)00009-8.
Guerova, G., Brockmann, E., Schubiger, F. et al. (2005). An integrated assessment of measured and modeled integrated water vapor in Switzerland for the period 2001-03. J. Appl. Meteorol. Climatol., 44, 1033–1044. DOI: 10.1175/JAM2255.1.
Guerova, G., Jones, J., Douša, J. et al. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech., 9, 5385–5406. DOI: 10.5194/amt-9-5385-2016.
Haase, J., Ge, M., Vedel, H. et al. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteorol., 42(11), 1547–1568. DOI: 10.1175/1520-0450(2003)0421547:AAVOGT>2.0.CO;2.
Hanna, N., Trzcina, E., Möller, G. et al. (2019). Assimilation of GNSS tomography products into WRF using radio occultation data assimilation operator. Atmos. Meas.Tech.s Discuss., 1–32. DOI: 10.5194/amt-12-4829-2019.
Ingram,W. (2010). A very simple model for the water vapour feedback on climate change. Quarterly J. R. Meteorol. Soc., 136, 30–40. DOI: 10.1002/qj.546.
Jacob, D. (2001). The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 523–527. DOI: 10.1016/S1464-1895(01)00094-1.
Jung, T., Ruprecht, E., and Wagner, F. (1998). Determination of cloud liquid water path over the oceans from Special Sensor Microwave/Imager (SSM/I) data using neural networks. J. Appl. Meteorol., 37, 832–844. DOI: 10.1175/1520-0450(1998)0370832:DOCLWP>2.0.CO;2.
Karabati´c, A., Weber, R., and Haiden, T. (2011). Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv. Space Res., 47, 1691–1703. DOI: 10.1016/j.asr.2010.10.028.
Kleijer, F. (2004). Troposphere modeling and filtering for precise GPS leveling. Ph.D. thesis. TU Delft: Delft University of Technology. DOI: 10.26491/mhwm/65146.
Kryza, M., Werner, M., Wałszek, K. et al. (2013). Application and evaluation of the WRF model for high-resolution forecasting of rainfall-a case study of SW Poland. Meteorologische Zeitschrift, 22, 595–601. DOI: 10.1127/0941-2948/2013/0444.
Liang, H., Cao, Y., Wan, X. et al. (2015). Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn., 6, 135–142. DOI: 10.1016/J.GEOG.2015.03.001.
Liou, Y.-A., Teng, Y.-T., Van Hove, T. et al. (2001). Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol., 40, 5–15. DOI: 10.1175/1520-0450(2001)0400005:COPWOI>2.0.CO;2.
Liu, J., Sun, Z., Liang, H. et al. (2005). Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res. Atmos., 110. DOI: 10.1029/2004JD005715.
Löhnert, U., Turner, D.D., and Crewell, S. (2009). Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions. J. Appl. Meteorol. Climatol., 48(5), 1017–1032. DOI: 10.1175/2008JAMC2060.1.
Löhnert, U., and Maier, O. (2012). Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5(5), 1121–1134. DOI: 10.5194/amt-5-1121-2012.
Lu, C., Li, X., Li, Z. et al. (2016). GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. J. Geophys. Res. Atmos., 121, 912–930. DOI: 10.1002/2015JD024255.
Mahfouf, J.-F., Ahmed, F., Moll, P. et al. (2015). Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment. Tellus A: Dyn. Meteorol. Oceanogr., 67, 26106. DOI: 10.3402/tellusa.v67.26106.
Massaro, G., Stiperski, I., Pospichal, B. et al. (2015). Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8(8), 3355–3367. DOI: 10.5194/amt-8-3355-2015.
Miloshevich, L.M., Paukkunen, A., Vömel, H. et al. (2004). Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Tech., 21, 1305–1327. DOI: 10.1175/1520-0426(2004)0211305:DAVOAT>2.0.CO;2.
Möller, G., Wittmann, C., Yan, X. et al. (2015). 3D ground based GNSS atmospheric tomography. Final report, FFG project GNSS-ATom (ID:840098).
Morland, J., Collaud Coen, M., Hocke, K. et al. (2009). Tropospheric water vapour above Switzerland over the last 12 years. Atmos. Chemis. Phys., 9, 5975–5988, 2009. DOI: 10.5194/acp-9-5975-2009.
Ning, T. and Elgered, G. (2021). High temporal resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations. Atmos. Meas. Tech. Discuss., 1–21. DOI: 10.5194/amt-14-5593-2021.
Offiler, D. (2010). EIG EUMETNET GNSSWater Vapour Programme (E-GVAP-II) Product Requirements Document. Tech. rep. EIG EUMETNET.
Ohtani, R. and Naito, I. (2000). Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. Atmos., 105, 26917–26929. DOI: 10.1029/2000JD900362.
Pacione, R., Pace, B., Vedel, H. et al. (2011). Combination methods of tropospheric time series. Adv. Space Res. DOI: 10.1016/j.asr.2010.07.021.
Pacione, R., Araszkiewicz, A., Brockmann, E. et al. (2017). EPN-Repro2: A reference GNSS tropospheric data set over Europe. Atmos. Meas. Tech., 10, 1689–1705. DOI: 10.5194/amt-10-1689-2017.
Rocken, C., Van Hove, T., Johnson et al. (1995). GPS/STORM–GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 468–478. DOI: 10.1175/1520-0426(1995)0120468:GSOAWV>2.0.CO;2.
Rohm, W., Guzikowski, J., Wilgan, K. et al. (2019). 4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF. Atmos. Meas.Tech., 12, 345–361. DOI: 10.5194/amt-12-345-2019.
RPG: Operation Principles and Software Description for RPG standard single polarization radiometers (G5series), Radiometer Physics GmbH,Werner-von-Siemens-Str. 4, 53340 Meckenheim, Germany, 12 edn., https://www.radiometer-physics.de, 2017.
Sá, A., Rohm, W., Fernandes, R.M. et al. (2021). Approach to leveraging real-time GNSS tomography usage. J. Geod., 95(1), 1–21. DOI: 10.1007/s00190-020-01464-7.
Shangguan, M., Heise, S., Bender, M. et al. (2015). Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode. Annal. Geophys., 33, 55–61. DOI: 10.5194/angeo-33-55-2015.
Skamarock, W.C., Klemp, J.B., Dudhia, J. et al. (2008). A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR. DOI: 10.5065/D68S4MVH.
Solheim, F., Godwin, J.R., Westwater, E. et al. (1998). Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci., 33, 393–404. DOI: 10.1029/97RS03656.
Thayer, G.D. (1974). An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807. DOI: 10.1029/RS009i010p00803.
Tonda´s, D., Kapłon, J., and Rohm, W. (2020). Ultra-fast near real-time estimation of troposphere parameters and coordinates from GPS data. Measurement, 107849. DOI: 10.1016/j.measurement.2020.107849.
Trzcina, E. and Rohm,W. (2019). Estimation of 3D wet refractivity by tomography, combining GNSS and NWP data: First results from assimilation of wet refractivity into NWP. Q. J. R. Meteorol. Soc., 145, 1034–1051. DOI: 10.1002/qj.3475.
Trzcina, E., Hanna, N., Kryza, M. et al. (2020). TOMOREF Operator for Assimilation of GNSS TomographyWet Refractivity Fields in WRF DA System. J. Geophys. Res. Atmos., 125, e2020JD032, 451. DOI: 10.1029/2020JD032451.
Ulaby, F., Moore, R., and Fung, A. (1986). An improved equation for the radio refractive index of air. Artech House, I–II. DOI: 10.1029/RS009i010p00803.
Van Baelen, J., Aubagnac, J.-P., and Dabas, A. (2005). Comparison of near–real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Tech., 22, 201–210. DOI: 10.1175/JTECH-1697.1.
Van Baelen, J., Reverdy, M., Tridon, F. et al. (2011). On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q. J. R. Meteorol. Soc., 137, 204–223. DOI: 10.1002/qj.785.
Vey, S., Dietrich, R., Rülke, A. et al. (2010). Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J. Clim., 23, 1675–1695. DOI: 10.1175/2009JCLI2787.1.
Wang, J. and Liu, Z. (2019). Improving GNSS PPP accuracy through WVR PWV augmentation. J. Geod., 93, 1685–1705. DOI: 10.1007/s00190-019-01278-2.
Wilgan, K., Rohm, W., and Bosy, J. (2015). Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model. Atmos. Res., 156, 29–42. DOI: 10.1016/j.atmosres.2014.12.011.
Zhao, Q., Yao, Y., Yao, W. et al. (2019a). GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J. Atmos. and Sol.-Terr. Phys., 182, 85–92. DOI: 10.1016/j.jastp.2018.11.004.
Zhao, Y., Xu, X., Zhao, T. et al. (2019b). Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. Intern. J. Climat., 39, 3121–3133. DOI: 10.1002/joc.6000.
Zus, F., Wickert, J., Bauer, H.S. et al. (2011). Experiments of GPS slant path data assimilation with an advanced MM5 4DVAR system. Meteorologische Zeitschrift, 173–184. DOI: 10.1127/0941-2948/2011/0232.
Go to article

Authors and Affiliations

Estera Trzcina
1
Damian Tondaś
1
ORCID: ORCID
Witold Rohm
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the most critical factors which determine the accuracy of deformation maps provided by Differential Synthetic Aperture Radar Interferometry (DInSAR) are atmospheric artefacts. Nowadays, one of the most popular approaches to minimize atmospheric artefacts is Generic Atmospheric Correction Online Service for InSAR (GACOS). Nevertheless, in the literature, the authors reported various effects of GACOS correction on the deformation estimates in different study areas Therefore, this paper aims to assess the effect of GACOS correction on the accuracy of DInSAR-based deformation monitoring in USCB by using Sentinel-1 data. For the accuracy evaluation, eight Global Navigation Satellite Systems (GNSS) permanent stations, as well as five low-cost GNSS receivers were utilized. GACOS-based DInSAR products were evaluated for: (1) single interferograms in different geometries; (2) cumulative deformation maps in various geometries and (3) decomposed results delivered from GACOS-based DInSAR measurements. Generally, based on the achieved results, GACOS correction had a positive effect on the accuracy of the deformation estimates in USCB by using DInSAR approach and Sentinel-1 data in each before mentioned aspect. When considering (1), it was possible to achieve Root Mean Square Error (RMSE) below 1 cm for a single interferogram for only 20% and 26% of the ascending and descending investigated interferograms, respectively when compared with GNSS measurements. The RMSE below 2 cm was achieved by 47% and 66% of the descending and ascending interferograms, respectively.
Go to article

Bibliography

Berardino, P., Fornaro, G., Lanari, R. et. al. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40, 2375–2383. DOI: 10.1109/TGRS.2002.803792.
Biagi, L., Grec, F.C., and Negretti, M. (2016). Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacements. Sensors, 16(12), 2140. DOI: 10.3390/s16122140.
Boehm, J., Niell, A., Tregoning, P. et al. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, 7. DOI: 10.1029/2005GL025546.
Cianflone, G., Tolomei, C., Brunori, C.A. et al. (2015). InSAR time series analysis of natural and anthropogenic coastal plain subsidence: The case of sibari (Southern Italy). Remote Sens., 7, 16004–16023. DOI: 10.3390/rs71215812.
Chen, G. and Herring, T.A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth, 102, 20489–20502. DOI: 10.1029/97jb01739.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS software version 5.2. Dach, R., Schaer, S., Arnold, D. et. al. (2018). CODE final product series for the IGS. Astronomical Institute, University of Bern.
Darvishi, M., Cuozzo, G., Bruzzone, L. et al. (2020). Performance Evaluation of Phase andWeather-Based Models in Atmospheric Correction with Sentinel-1Data: Corvara Landslide in the Alps. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 13, 1332–1346. DOI: 10.1109/JSTARS.2020.2969726.
Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens., 39, 8–20. DOI: 10.1109/36.898661.
Graniczny, M., Kowalski, Z., Przyłucka, M., et al. (2014). Application of SAR data for the monitoring of ground deformations caused by mining activities in the area of the upper Silesian Coal Basin: the results of DORIS project (EC-FP7). Przegląd Górniczy, 70(12), 11–19.
Hanssen, R.F. (2001). Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.
Li, Z., Fielding, E.J., Cross, P. et al. (2009). Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens., 30(13). DOI: 10.1080/ 01431160802562172.
Liu, Z., Zhou, C., Fu, H. et. al. (2020). A framework for correcting ionospheric artifacts and atmospheric effects to generate high accuracy InSAR DEM. Remote Sens., 12, 318. DOI: 10.3390/rs12020318.
Meyer, F.J., Chotoo, K., Chotoo, S.D. et. al. (2016). The Influence of Equatorial Scintillation on LBand SAR Image Quality and Phase. IEEE Trans Geosci Remote Sens., 54, 869–880. DOI: 10.1109/TGRS.2015.2468573.
Murray, K.D., Bekaert, D.P.S. and Lohman, R.B. (2019). Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sens. Environ., 232, 111326. DOI: 10.1016/j.rse.2019.111326.
Mutke, G., Kotyrba, A., Lurka, A. et. al. (2019). Upper Silesian Geophysical Observation System. A unit of the EPOS project. J. Sustain. Min., 18, 198–207. DOI: 10.1016/j.jsm.2019.07.005.
Ng, A.H.-M., Ge, L., Zhang, K. et. al. (2011). Deformation mapping in three dimensions for underground mining using InSAR – Southern highland coalfield in New South Wales, Australia. Int. J. Remote Sens., 32, 7227–7256. DOI: 10.1080/01431161.2010.519741.
Notti, D., Cina, A., Manzino, A. et al. (2020). Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors, 20(1), 289. DOI: 10.3390/s20010289.
Pawluszek-Filipiak, K. and Borkowski, A. (2020). Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data: The case study of rydultowy mine in Poland. Remote Sens., 12, 242. DOI: 10.3390/rs12020242.
Pawluszek-Filipiak, K. and Borkowski, A. (2021). Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur. J. Remote Sens., 54, 18–30. DOI: 10.1080/22797254.2020.1759455.
Perski, Z. (1998). Applicability of Ers-1 and Ers-2 Insar for Land Subsidence Monitoring in the Silesian Coal Mining Region, Poland. Int. Arch. Photogr. Remote Sens., 32, 555–558.
Przylucka, M., Herrera, G., Graniczny, M. et al. (2015). Combination of conventional and advanced DIn- SAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sens., 7, 5300–5328. DOI: 10.3390/rs70505300.
Ramdani, F., Amanda, F.F. and Tsuchiya, N. (2019). Displacement Linear Surface Rupture of the 2018 Palu Earthquake Detected by Sentinel-1 Sar Interferometry and Very High-Resolution Imageries of Planetscope Data. In: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc., pp. 9292–9294.
Razi, P., Tetuko Sri Sumantyo, J., Perissin, D. et al. (2019). Ground deformation measurement of Sinabung vulcano eruption using DInSAR technique. J. Phys. Conf. Ser., 12008. DOI: 10.1088/1742- 6596/1185/1/012008.
Tang, W., Zhan, W., Jin, B. et al. (2021). Spatial Variability of Relative Sea-Level Rise in Tianjin, China: Insight from InSAR, GPS, and Tide-Gauge Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2621–2633. DOI: 10.1109/JSTARS.2021.3054395.
Wang, Q., Yu, W., Xu, B. et al. (2019). Assessing the use of gacos products for sbas-insar deformation monitoring: A case in southern california. Sensors, 19, 3894. DOI: 10.3390/s19183894.
Wielgocka, N., Hadas, T., Kaczmarek, A. et al. (2021). Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. DOI: 10.3390/s21061956.
Winsvold, S.H., Kääb, A., Nuth, C. et al. (2018). Using SAR satellite data time series for regional glacier mapping. Cryosphere, 12, 867–890. DOI: 10.5194/tc-12-867-2018.
Xiao, R., Yu, C., Li, Z. et al. (2021). Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth Obs. Geoinf., 96, 102289. DOI: 10.1016/j.jag.2020.102289.
Yu, C., Penna, N.T. and Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res., 122, 2008–2025. DOI: 10.1002/2016JD025753.
Yu, C., Li, Z., Penna, N. et al. (2018a). Generic Atmospheric Correction Online Service for InSAR (GACOS).
Yu, C., Li, Z., Penna, N.T. (2018b). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ., 204, 109–121. DOI: 10.1016/j.rse.2017.10.038.
Yu, C., Li, Z., Penna, N.T. et al. (2018c). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth, 123, 9202–9222. DOI: 10.1029/2017JB015305.
Yu, C., Li, Z., Penna, N.T. (2020). Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaik¯oura earthquake from InSAR time series with atmospheric corrections. Remote Sens. Environ., 251, 112097. DOI: 10.1016/j.rse.2020.112097.
Zebker, H.A., Rosen, P.A. and Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth, 102, 7547–7563. DOI: 10.1029/96jb03804.
Zebker, H. (2021). Accuracy of a model-free algorithm for temporal insar tropospheric correction. Remote Sens., 13, 1–9. DOI: 10.3390/rs13030409.
Zhou, X., Chang, N.B., Li, S. (2009). Applications of SAR interferometry in earth and environmental science research. Sensors, 9, 1876–1912. DOI: 10.3390/s90301876.
Go to article

Authors and Affiliations

Kamila Pawłuszek-Filipiak
1
ORCID: ORCID
Natalia Wielgocka
1
ORCID: ORCID
Tymon Lewandowski
1
ORCID: ORCID
Damian Tondaś
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland

This page uses 'cookies'. Learn more