Details

Title

Assessing the application of GACOS atmospheric correction for DInSAR-based mining deformation monitoring by using Sentinel-1 data in Upper Silesian Coal Basin in Poland

Journal title

Geodesy and Cartography

Yearbook

2021

Volume

vol. 70

Issue

No 2

Affiliation

Pawłuszek-Filipiak, Kamila : Wroclaw University of Environmental and Life Science, Wroclaw, Poland ; Wielgocka, Natalia : Wroclaw University of Environmental and Life Science, Wroclaw, Poland ; Lewandowski, Tymon : Wroclaw University of Environmental and Life Science, Wroclaw, Poland ; Tondaś, Damian : Wroclaw University of Environmental and Life Science, Wroclaw, Poland

Authors

Keywords

satellite radar interferometry ; GACOS correction ; deformation maps ; mining

Divisions of PAS

Nauki Techniczne

Coverage

article no. e10

Publisher

Commitee on Geodesy PAS

Bibliography

Berardino, P., Fornaro, G., Lanari, R. et. al. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40, 2375–2383. DOI: 10.1109/TGRS.2002.803792.
Biagi, L., Grec, F.C., and Negretti, M. (2016). Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacements. Sensors, 16(12), 2140. DOI: 10.3390/s16122140.
Boehm, J., Niell, A., Tregoning, P. et al. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, 7. DOI: 10.1029/2005GL025546.
Cianflone, G., Tolomei, C., Brunori, C.A. et al. (2015). InSAR time series analysis of natural and anthropogenic coastal plain subsidence: The case of sibari (Southern Italy). Remote Sens., 7, 16004–16023. DOI: 10.3390/rs71215812.
Chen, G. and Herring, T.A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth, 102, 20489–20502. DOI: 10.1029/97jb01739.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS software version 5.2. Dach, R., Schaer, S., Arnold, D. et. al. (2018). CODE final product series for the IGS. Astronomical Institute, University of Bern.
Darvishi, M., Cuozzo, G., Bruzzone, L. et al. (2020). Performance Evaluation of Phase andWeather-Based Models in Atmospheric Correction with Sentinel-1Data: Corvara Landslide in the Alps. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 13, 1332–1346. DOI: 10.1109/JSTARS.2020.2969726.
Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens., 39, 8–20. DOI: 10.1109/36.898661.
Graniczny, M., Kowalski, Z., Przyłucka, M., et al. (2014). Application of SAR data for the monitoring of ground deformations caused by mining activities in the area of the upper Silesian Coal Basin: the results of DORIS project (EC-FP7). Przegląd Górniczy, 70(12), 11–19.
Hanssen, R.F. (2001). Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.
Li, Z., Fielding, E.J., Cross, P. et al. (2009). Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens., 30(13). DOI: 10.1080/ 01431160802562172.
Liu, Z., Zhou, C., Fu, H. et. al. (2020). A framework for correcting ionospheric artifacts and atmospheric effects to generate high accuracy InSAR DEM. Remote Sens., 12, 318. DOI: 10.3390/rs12020318.
Meyer, F.J., Chotoo, K., Chotoo, S.D. et. al. (2016). The Influence of Equatorial Scintillation on LBand SAR Image Quality and Phase. IEEE Trans Geosci Remote Sens., 54, 869–880. DOI: 10.1109/TGRS.2015.2468573.
Murray, K.D., Bekaert, D.P.S. and Lohman, R.B. (2019). Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sens. Environ., 232, 111326. DOI: 10.1016/j.rse.2019.111326.
Mutke, G., Kotyrba, A., Lurka, A. et. al. (2019). Upper Silesian Geophysical Observation System. A unit of the EPOS project. J. Sustain. Min., 18, 198–207. DOI: 10.1016/j.jsm.2019.07.005.
Ng, A.H.-M., Ge, L., Zhang, K. et. al. (2011). Deformation mapping in three dimensions for underground mining using InSAR – Southern highland coalfield in New South Wales, Australia. Int. J. Remote Sens., 32, 7227–7256. DOI: 10.1080/01431161.2010.519741.
Notti, D., Cina, A., Manzino, A. et al. (2020). Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors, 20(1), 289. DOI: 10.3390/s20010289.
Pawluszek-Filipiak, K. and Borkowski, A. (2020). Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data: The case study of rydultowy mine in Poland. Remote Sens., 12, 242. DOI: 10.3390/rs12020242.
Pawluszek-Filipiak, K. and Borkowski, A. (2021). Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur. J. Remote Sens., 54, 18–30. DOI: 10.1080/22797254.2020.1759455.
Perski, Z. (1998). Applicability of Ers-1 and Ers-2 Insar for Land Subsidence Monitoring in the Silesian Coal Mining Region, Poland. Int. Arch. Photogr. Remote Sens., 32, 555–558.
Przylucka, M., Herrera, G., Graniczny, M. et al. (2015). Combination of conventional and advanced DIn- SAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sens., 7, 5300–5328. DOI: 10.3390/rs70505300.
Ramdani, F., Amanda, F.F. and Tsuchiya, N. (2019). Displacement Linear Surface Rupture of the 2018 Palu Earthquake Detected by Sentinel-1 Sar Interferometry and Very High-Resolution Imageries of Planetscope Data. In: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc., pp. 9292–9294.
Razi, P., Tetuko Sri Sumantyo, J., Perissin, D. et al. (2019). Ground deformation measurement of Sinabung vulcano eruption using DInSAR technique. J. Phys. Conf. Ser., 12008. DOI: 10.1088/1742- 6596/1185/1/012008.
Tang, W., Zhan, W., Jin, B. et al. (2021). Spatial Variability of Relative Sea-Level Rise in Tianjin, China: Insight from InSAR, GPS, and Tide-Gauge Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2621–2633. DOI: 10.1109/JSTARS.2021.3054395.
Wang, Q., Yu, W., Xu, B. et al. (2019). Assessing the use of gacos products for sbas-insar deformation monitoring: A case in southern california. Sensors, 19, 3894. DOI: 10.3390/s19183894.
Wielgocka, N., Hadas, T., Kaczmarek, A. et al. (2021). Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. DOI: 10.3390/s21061956.
Winsvold, S.H., Kääb, A., Nuth, C. et al. (2018). Using SAR satellite data time series for regional glacier mapping. Cryosphere, 12, 867–890. DOI: 10.5194/tc-12-867-2018.
Xiao, R., Yu, C., Li, Z. et al. (2021). Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth Obs. Geoinf., 96, 102289. DOI: 10.1016/j.jag.2020.102289.
Yu, C., Penna, N.T. and Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res., 122, 2008–2025. DOI: 10.1002/2016JD025753.
Yu, C., Li, Z., Penna, N. et al. (2018a). Generic Atmospheric Correction Online Service for InSAR (GACOS).
Yu, C., Li, Z., Penna, N.T. (2018b). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ., 204, 109–121. DOI: 10.1016/j.rse.2017.10.038.
Yu, C., Li, Z., Penna, N.T. et al. (2018c). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth, 123, 9202–9222. DOI: 10.1029/2017JB015305.
Yu, C., Li, Z., Penna, N.T. (2020). Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaik¯oura earthquake from InSAR time series with atmospheric corrections. Remote Sens. Environ., 251, 112097. DOI: 10.1016/j.rse.2020.112097.
Zebker, H.A., Rosen, P.A. and Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth, 102, 7547–7563. DOI: 10.1029/96jb03804.
Zebker, H. (2021). Accuracy of a model-free algorithm for temporal insar tropospheric correction. Remote Sens., 13, 1–9. DOI: 10.3390/rs13030409.
Zhou, X., Chang, N.B., Li, S. (2009). Applications of SAR interferometry in earth and environmental science research. Sensors, 9, 1876–1912. DOI: 10.3390/s90301876.

Date

2021.11.16

Type

Article

Identifier

DOI: 10.24425/gac.2021.136685

Aims and scope

The Advances in Geodesy and Geoinformation (formerly “Geodesy and Cartography”) is an open access international journal (semiannual) concerned with the study of scientific problems in the field of geodesy, geoinformation and their related interdisciplinary sciences. The journal has a rigorous peer–review process to ensure the best research publications. It is publishing peer–reviewed original articles on theoretical or modelling studies, and on results of experiments associated with geodesy and geodynamics, geoinformation, cartography and GIS, cadastre and land management, photogrammetry, remote sensing and related disciplines. Besides original research articles, the Advances in Geodesy and Geoinformation also accepts review articles on topical subjects, short notes/letters and communication of a great importance to the readers, and special issues arising from the national/international conferences as well as collection of articles that concentrates on a hot topical research area that falls within the scope of the journal.

Content of Advances in Geodesy and Geoinformation is archived with a long-term preservation service by the National Library of Poland.

×