Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article describes a test stand with a spindle equipped with an active bearing preload system using piezoelectric actuators. The proper functioning of the spindle and the active system was associated with the correct alignment of the spindle shaft and the drive motor. The article presents two methods of shaft alignment. The use of commonly known shaft alignment methods with dial indicators is insufficient from the viewpoint of being able to control this preload. This work aims at making the readers aware that, for systems with active bearing preload, the latest measuring devices should be used to align the shaft. The use of commonly known methods of equalization with dial gauges is insufficient from the point of view of controlling this preload. Increasing the accuracy of shaft alignment from 0.1 to 0.01 mm made it possible to obtain a 50% reduction in the displacement of the outer bearing ring during spindle operation.

Go to article

Bibliography

[1] F. Chen and G. Liu. Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator. The International Journal of Advanced Manufacturing Technology, 89(1–4):691–700, 2017. doi: 10.1007/s00170-016-9118-y.
[2] A.H. Hadi Hosseinabadi and Y. Altintas. Modelling and active damping of structural vibrations in machine tools. CIRP Journal of Manufacturing Science and Technology, 7(3):246–257, 2014. doi: 10.1016/j.cirpj.2014.05.001.
[3] Y.K. Hwang and Ch.M. Lee. Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet. International Journal of Machine Tools and Manufacture, 50(3):253–259, 2010. doi: 10.1016/j.ijmachtools.2009.12.002.
[4] G. Quintana, J. de Ciurana, and F.J. Campa. Machine tool spindles. In: L.N. Lopez de Lacalle and Lamikiz (Eds.) Machine Tools for High Performance Machining, chapter 3, pages 75–126, Springer–Verlag, London, 2009.
[5] J. Sikorski and W. Pawłowski. Innovative designs of angular contact ball bearings systems preload mechanisms. Mechanik, 92(2):138–140, 2018. doi: 10.17814/mechanik.2018.2.29.
[6] J.S. Chen and K.W. Chen. Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools and Manufacture, 45(12-13):1487–1493, 2005. doi: 10.1016/j.ijmachtools.2005.01.024.
[7] P. Harris, B. Linke, and S. Spence. An energy analysis of electric and pneumatic ultra-high speed machine tool spindles. Procedia CIRP, 29:239–244, 2015.
[8] J. Dwojak and M. Rzepiela. Vibration Diagnostics of Machines and Devices. 2nd ed. Wyd. Biuro Gamma, Warsaw, Poland, 2005. (in Polish).
[9] G. Hagiu and B. Dragan. Feedback preload systems for high speed rolling bearings assemblies. The Annals of University Dunarea De Jos of Galati Fascicle VIII, 43–47, 2004.
[10] J. Kosmol and K. Lehrich. Electro spindle thermal model. Modelowanie Inżynierskie, 39:119–126, 2010. (in Polish).
[11] J. Vyroubal. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precision Engineering, 36(1):121–127, 2012. doi: 10.1016/j.precisioneng.2011.07.013.
[12] J. Piotrowski. Shaft Alignment Handbook. 3rd edition. CRC Press, Boca Raton, 2006.
[13] S. Szymaniec. Research, Operation and Diagnostics of Machine Sets with Squirrel Cage Induction Motors. Wyd. Oficyna Wydawnicza Politechniki Opolskiej, Studia i Monografie, 333, Opole 2013. (in Polish).
[14] K.P. Anandan and O.B. Ozdoganlar. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles. Precision Engineering, 43:119–131, 2016. doi: 10.1016/j.precisioneng.2015.07.002.
[15] Z. Plutecki, S. Szymaniec, and J. Smykała. A new method for setting industrial drives. Zeszyty problemowe – maszyny elektryczne, 2(102), 201–207, 2014. (in Polish).
[16] J. Dwojak. The use of a laser to determine the alignment of machine shafts is a revolution in alignment. Transport Przemysłowy, 3, 2005. (in Polish).
[17] Shaft alignment, a professional system for measuring and aligning rotor machines. The Easy Laser Catalog. (in Polish).
[18] H. Krzemiński–Freda. Rolling Bearings. PWN, Warszawa, 1985. (in Polish).
[19] S. Waczyński. Shaft bearing using angular contact roller bearings and elastic element. Problems of unconventional bearing systems. A collection of Conference Works edited by J. Burcan, Łódź, 71–74, 1995. (in Polish).
[20] A. Parus, M. Pajor, and M. Hoffmann. Suppression of self-excited vibration in cutting process using piezoelectric and electromagnetic actuators. Advances in Manufacturing Science and Technology, 33(4):35–50, 2009.
[21] Operating Manual, Universal Amplifier QuantumX MX840A HBM, 2011.
[22] W. Modrzycki. Identification and compensation of machine tool errors. Inżynieria Maszyn, 13(3-4):91–100, 2008. (in Polish).
[23] P. Turek, W. Skoczyński, and M. Stembalski. Comparison of methods for adjusting and controlling the preload of angular-contact bearings. Journal of Machine Engineering. 16(2):71–85, 2016.
Go to article

Authors and Affiliations

Paweł Turek
1
Marek Stembalski
1

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The automotive industry requires more and more light materials with good strength and formability at the same time. The answer to this type of demands are, among others, aluminium alloys of the 6xxx series, which are characterized by a high strength-to-weight ratio and good corrosion resistance. Different material state can affect formability of AlMgSi sheets. These study analysed the influence of heat treatment conditions on the drawability of the sheet made of 6082 aluminium alloy. The studies on mechanical properties and plastic anisotropy for three orientations (0, 45, 90°) with respect to the rolling direction were carried out. The highest plasticity was found for the material in the 0 temper condition. The influence of heat treatment conditions on the sheet drawability was analysed using the Erichsen, Engelhardt-Gross, Fukui and AEG cupping tests. It was found that the material state influenced the formability of the sheet. In the case of bulging, the sheet in the annealed state was characterized by greater drawability, and in the deep drawing process, greater formability was found for the naturally aged material.
Go to article

Bibliography

[1] W. Muzykiewicz, Validation tests for the 6082-grade sheet in the "0" state with an account of its application for deep drawing processes. Rudy i Metale Nieżelazne, 51(7):422–427, 2006. (in Polish).
[2] A.C.S. Reddy, S. Rajesham, P.R. Reddy, and A.C. Umamaheswar. Formability: A review on different sheet metal tests for formability. AIP Conference Proceedings, 2269:030026, 2020. doi: 10.1063/5.0019536.
[3] Y. Dewang, V. Sharma, and Y. Batham. influence of punch velocity on deformation behavior in deep drawing of aluminum alloy. Journal of Failure Analysis and Prevention, 21(2):472–487, 2021. doi: 10.1007/s11668-020-01084-5.
[4] S. Bansal. Study of Deep Drawing Process and its Parameters Using Finite Element Analysis. Master Thesis, Delhi Technological University, India, 2022.
[5] E. Nghishiyeleke, M. Mashingaidze, and A. Ogunmokun, Formability characterization of aluminium AA6082-O sheet metal by uniaxial tension and Erichsen cupping tests. International Journal of Engineering and Technology, 7(4):6768–6777, 2018.
[6] J. Adamus, M. Motyka, and K. Kubiak. Investigation of sheet-titanium drawability. In: 12th World Conference on Titanium (Ti-2011), Beijing, China, 19-24 June 2011.
[7] R.R. Goud, K.E. Prasad, and S.K. Singh. formability limit diagrams of extra-deep-drawing steel at elevated temperatures. Procedia Materials Science, 6:123–128, 2014. doi: 10.1016/j.mspro.2014.07.014.
[8] R. Norz, F.R. Valencia, S. Gerke, M. Brünig, and W. Volk. Experiments on forming behaviour of the aluminium alloy AA6016. IOP Conference Series: Materials Science and Engineering, 1238(1):012023, 2022. doi: 10.1088/1757-899X/1238/1/012023.
[9] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1):37–49, 2000. doi: 10.1016/S0921-5093(99)00653-X.
[10] J.C. Benedyk. Aluminum alloys for lightweight automotive structures. In P.K. Mallick (ed.): Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, pages 79–113, 2010. doi: 10.1533/9781845697822.1.79.
[11] M. Bloeck. Aluminium sheet for automotive applications. In J. Rowe (ed.): Advanced Materials in Automotive Engineering. Woodhead Publishing Limited, pages 85–108, 2012. doi: 10.1533/9780857095466.85.
[12] N.I. Kolobnev, L.B. Ber, L.B. Khokhlatova, and D.K. Ryabov. Structure, properties and application of alloys of the Al – Mg – Si – (Cu) system. Metal Science and Heat Treatment, 53(9-10):440–444, 2012. doi: 10.1007/s11041-012-9412-8.
[13] P. Lackova, M. Bursak, O. Milkovic, M. Vojtko, and L. Dragosek, Influence of heat treatment on properties of EN AW 6082 aluminium alloy. Acta Metallurgica Slovaca, 21(1):25–34, 2015. doi: 10.12776/ams.v21i1.553.
[14] R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. Uggowitzer, and S. Pogatscher. Property criteria for automotive Al-Mg-Si sheet alloys. Materials, 7(7):5047–5068, 2014. doi: 10.3390/ma7075047.
[15] N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, and S. van der Zwaag. Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys. Materials Characterization, 49(5):409–420, 2002. doi: 10.1016/S1044-5803(03)00036-6.
[16] G. Mrówka-Nowotnik. Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Archives of Materials Science and Engineering, 46(2):98–107, 2010.
[17] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Tensile properties and fracture toughness of heat treated 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 12(1-2):105–108, 2006.
[18] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 32(2):162–170, 2009.
[19] X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, and X. Li. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals, 9(2):173, 2019. doi: 10.3390/met9020173.
[20] Z. Li, L. Chen, J. Tang, G. Zhao, and C. Zhang. Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study. Journal of Alloys and Compounds, 848:156561, 2020. doi: 10.1016/j.jallcom.2020.156561.
[21] J.R. Hirsch. Automotive trends in aluminium - the European perspective. Materials Forum, 28(1):15–23, 2004.
[22] W. Moćko and Z.L. Kowalewski. Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport, 19(2):345–351, 2012.
[23] N. Kumar, S. Goel, R. Jayaganthan, and H.-G. Brokmeier. Effect of solution treatment on mechanical and corrosion behaviors of 6082-T6 Al alloy. Metallography, Microstructure, and Analysis, 4(5):411–422, 2015. doi: 10.1007/s13632-015-0219-z.
[24] M. Fujda, T. Kvackaj, and K. Nagyová. Improvement of mechanical properties for EN AW 6082 aluminium alloy using equal-channel angular pressing (ECAP) and post-ECAP aging. Journal of Metals, Materials and Minerals, 18(1):81–87, 2008.
[25] I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia. Tensile behaviour of 6082 aluminium alloy sheet under different conditions of heat treatment, temperature and strain rate. Key Engineering Materials, 423:105–112, 2009. doi: 10.4028/www.scientific.net/KEM.423.105.
[26] O. Çavuşoğlu, H.İ. Sürücü, S. Toros, and M. Alkan, Thickness dependent yielding behavior and formability of AA6082-T6 alloy: experimental observation and modeling. The International Journal of Advanced Manufacturing Technology, 106:4083–4091, 2020. doi: 10.1007/s00170-019-04878-6.
[27] J. Slota, I. Gajdos, T. Jachowicz, M. Siser, and V. Krasinskyi. FEM simulation of deep drawing process of aluminium alloys. Applied Computer Science, 11(4):7–19, 2015.
[28] Ö. Özdilli. An investigation of the effects of a sheet material type and thickness selection on formability in the production of the engine oil pan with the deep drawing method. International Journal of Automotive Science And Technology, 4(4):198–205, 2020. doi: 10.30939/ijastech..773926.
[29] W.T. Lankford, S.C. Snyder, and J.A. Bauscher. New criteria for predicting the press performance of deep drawing sheets. ASM Transactions Quarterly, 42:1197–1232, 1950.
[30] A.C. Sekhara Reddy, S. Rajesham, and P. Ravinder Reddy. Evaluation of limiting drawing ratio (LDR) in deep drawing by rapid determination method. International Journal of Current Engineering and Technology, 4(2):757–762, 2014.
[31] R.U. Kumar. Analysis of Fukui’s conical cup test. International Journal of Innovative Technology and Exploring Engineering, 2(2):30–31, 2013.
[32] Ł. Kuczek, W. Muzykiewicz, M. Mroczkowski, and J. Wiktorowicz. Influence of perforation of the inner layer on the properties of three-layer welded materials. Archives of Metallurgy and Materials, 64(3):991–996, 2019. doi: 10.24425/AMM.2019.129485.
[33] O. Engler and J. Hirsch. Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups. Materials Science and Engineering: A, 452–453:640–651, 2007. doi: 10.1016/j.msea.2006.10.108.
[34] M. Koç, J. Culp, and T. Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology, 174(1-3):342–354, 2006. doi: 10.1016/j.jmatprotec.2006.02.007.
[35] C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart. Positive effect of natural pre-ageing on precipitation hardening in Al–0.44 at% Mg–0.38 at% Si alloy. Ultramicroscopy, 109(5):585–592, 2009. doi: 10.1016/j.ultramic.2008.12.002.
[36] S. Jin, T. Ngai, G. Zhang, T. Zhai, S. Jia, and L. Li. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. Materials Science and Engineering: A, 724:53–59, 2018. doi: 10.1016/j.msea.2018.03.006.
[37] E. Ishimaru, A. Takahashi, and N. Ono. Effect of material properties and forming conditions on formability of high-purity ferritic stainless steel. Nippon Steel Technical Report. Nippon Steel & Sumikin Stainless Steel Corporation, 2010.
[38] E.H. Atzema. Formability of auto components. In R. Rana and S.B. Singh (eds.): Automotive Steels. Design, Metallurgy, Processing and Applications. Woodhead Publishing, pages 47–93, 2017. doi: 10.1016/B978-0-08-100638-2.00003-1.
Go to article

Authors and Affiliations

Łukasz Kuczek
1
ORCID: ORCID
Marcin Mroczkowski
1
ORCID: ORCID
Paweł Turek
1

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland

This page uses 'cookies'. Learn more