Details

Title

Investigation of deep drawability of 6082 aluminium alloy sheet for automotive applications after various heat treatment conditions

Journal title

Archive of Mechanical Engineering

Yearbook

2023

Volume

vol. 70

Issue

No 1

Authors

Affiliation

Kuczek, Łukasz : AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland ; Mroczkowski, Marcin : AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland ; Turek, Paweł : AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland

Keywords

6082 alloy ; drawability ; heat treatment ; mechanical properties ; plastic anisotropy

Divisions of PAS

Nauki Techniczne

Coverage

107-128

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] W. Muzykiewicz, Validation tests for the 6082-grade sheet in the "0" state with an account of its application for deep drawing processes. Rudy i Metale Nieżelazne, 51(7):422–427, 2006. (in Polish).
[2] A.C.S. Reddy, S. Rajesham, P.R. Reddy, and A.C. Umamaheswar. Formability: A review on different sheet metal tests for formability. AIP Conference Proceedings, 2269:030026, 2020. doi: 10.1063/5.0019536.
[3] Y. Dewang, V. Sharma, and Y. Batham. influence of punch velocity on deformation behavior in deep drawing of aluminum alloy. Journal of Failure Analysis and Prevention, 21(2):472–487, 2021. doi: 10.1007/s11668-020-01084-5.
[4] S. Bansal. Study of Deep Drawing Process and its Parameters Using Finite Element Analysis. Master Thesis, Delhi Technological University, India, 2022.
[5] E. Nghishiyeleke, M. Mashingaidze, and A. Ogunmokun, Formability characterization of aluminium AA6082-O sheet metal by uniaxial tension and Erichsen cupping tests. International Journal of Engineering and Technology, 7(4):6768–6777, 2018.
[6] J. Adamus, M. Motyka, and K. Kubiak. Investigation of sheet-titanium drawability. In: 12th World Conference on Titanium (Ti-2011), Beijing, China, 19-24 June 2011.
[7] R.R. Goud, K.E. Prasad, and S.K. Singh. formability limit diagrams of extra-deep-drawing steel at elevated temperatures. Procedia Materials Science, 6:123–128, 2014. doi: 10.1016/j.mspro.2014.07.014.
[8] R. Norz, F.R. Valencia, S. Gerke, M. Brünig, and W. Volk. Experiments on forming behaviour of the aluminium alloy AA6016. IOP Conference Series: Materials Science and Engineering, 1238(1):012023, 2022. doi: 10.1088/1757-899X/1238/1/012023.
[9] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1):37–49, 2000. doi: 10.1016/S0921-5093(99)00653-X.
[10] J.C. Benedyk. Aluminum alloys for lightweight automotive structures. In P.K. Mallick (ed.): Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, pages 79–113, 2010. doi: 10.1533/9781845697822.1.79.
[11] M. Bloeck. Aluminium sheet for automotive applications. In J. Rowe (ed.): Advanced Materials in Automotive Engineering. Woodhead Publishing Limited, pages 85–108, 2012. doi: 10.1533/9780857095466.85.
[12] N.I. Kolobnev, L.B. Ber, L.B. Khokhlatova, and D.K. Ryabov. Structure, properties and application of alloys of the Al – Mg – Si – (Cu) system. Metal Science and Heat Treatment, 53(9-10):440–444, 2012. doi: 10.1007/s11041-012-9412-8.
[13] P. Lackova, M. Bursak, O. Milkovic, M. Vojtko, and L. Dragosek, Influence of heat treatment on properties of EN AW 6082 aluminium alloy. Acta Metallurgica Slovaca, 21(1):25–34, 2015. doi: 10.12776/ams.v21i1.553.
[14] R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. Uggowitzer, and S. Pogatscher. Property criteria for automotive Al-Mg-Si sheet alloys. Materials, 7(7):5047–5068, 2014. doi: 10.3390/ma7075047.
[15] N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, and S. van der Zwaag. Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys. Materials Characterization, 49(5):409–420, 2002. doi: 10.1016/S1044-5803(03)00036-6.
[16] G. Mrówka-Nowotnik. Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Archives of Materials Science and Engineering, 46(2):98–107, 2010.
[17] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Tensile properties and fracture toughness of heat treated 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 12(1-2):105–108, 2006.
[18] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 32(2):162–170, 2009.
[19] X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, and X. Li. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals, 9(2):173, 2019. doi: 10.3390/met9020173.
[20] Z. Li, L. Chen, J. Tang, G. Zhao, and C. Zhang. Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study. Journal of Alloys and Compounds, 848:156561, 2020. doi: 10.1016/j.jallcom.2020.156561.
[21] J.R. Hirsch. Automotive trends in aluminium - the European perspective. Materials Forum, 28(1):15–23, 2004.
[22] W. Moćko and Z.L. Kowalewski. Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport, 19(2):345–351, 2012.
[23] N. Kumar, S. Goel, R. Jayaganthan, and H.-G. Brokmeier. Effect of solution treatment on mechanical and corrosion behaviors of 6082-T6 Al alloy. Metallography, Microstructure, and Analysis, 4(5):411–422, 2015. doi: 10.1007/s13632-015-0219-z.
[24] M. Fujda, T. Kvackaj, and K. Nagyová. Improvement of mechanical properties for EN AW 6082 aluminium alloy using equal-channel angular pressing (ECAP) and post-ECAP aging. Journal of Metals, Materials and Minerals, 18(1):81–87, 2008.
[25] I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia. Tensile behaviour of 6082 aluminium alloy sheet under different conditions of heat treatment, temperature and strain rate. Key Engineering Materials, 423:105–112, 2009. doi: 10.4028/www.scientific.net/KEM.423.105.
[26] O. Çavuşoğlu, H.İ. Sürücü, S. Toros, and M. Alkan, Thickness dependent yielding behavior and formability of AA6082-T6 alloy: experimental observation and modeling. The International Journal of Advanced Manufacturing Technology, 106:4083–4091, 2020. doi: 10.1007/s00170-019-04878-6.
[27] J. Slota, I. Gajdos, T. Jachowicz, M. Siser, and V. Krasinskyi. FEM simulation of deep drawing process of aluminium alloys. Applied Computer Science, 11(4):7–19, 2015.
[28] Ö. Özdilli. An investigation of the effects of a sheet material type and thickness selection on formability in the production of the engine oil pan with the deep drawing method. International Journal of Automotive Science And Technology, 4(4):198–205, 2020. doi: 10.30939/ijastech..773926.
[29] W.T. Lankford, S.C. Snyder, and J.A. Bauscher. New criteria for predicting the press performance of deep drawing sheets. ASM Transactions Quarterly, 42:1197–1232, 1950.
[30] A.C. Sekhara Reddy, S. Rajesham, and P. Ravinder Reddy. Evaluation of limiting drawing ratio (LDR) in deep drawing by rapid determination method. International Journal of Current Engineering and Technology, 4(2):757–762, 2014.
[31] R.U. Kumar. Analysis of Fukui’s conical cup test. International Journal of Innovative Technology and Exploring Engineering, 2(2):30–31, 2013.
[32] Ł. Kuczek, W. Muzykiewicz, M. Mroczkowski, and J. Wiktorowicz. Influence of perforation of the inner layer on the properties of three-layer welded materials. Archives of Metallurgy and Materials, 64(3):991–996, 2019. doi: 10.24425/AMM.2019.129485.
[33] O. Engler and J. Hirsch. Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups. Materials Science and Engineering: A, 452–453:640–651, 2007. doi: 10.1016/j.msea.2006.10.108.
[34] M. Koç, J. Culp, and T. Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology, 174(1-3):342–354, 2006. doi: 10.1016/j.jmatprotec.2006.02.007.
[35] C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart. Positive effect of natural pre-ageing on precipitation hardening in Al–0.44 at% Mg–0.38 at% Si alloy. Ultramicroscopy, 109(5):585–592, 2009. doi: 10.1016/j.ultramic.2008.12.002.
[36] S. Jin, T. Ngai, G. Zhang, T. Zhai, S. Jia, and L. Li. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. Materials Science and Engineering: A, 724:53–59, 2018. doi: 10.1016/j.msea.2018.03.006.
[37] E. Ishimaru, A. Takahashi, and N. Ono. Effect of material properties and forming conditions on formability of high-purity ferritic stainless steel. Nippon Steel Technical Report. Nippon Steel & Sumikin Stainless Steel Corporation, 2010.
[38] E.H. Atzema. Formability of auto components. In R. Rana and S.B. Singh (eds.): Automotive Steels. Design, Metallurgy, Processing and Applications. Woodhead Publishing, pages 47–93, 2017. doi: 10.1016/B978-0-08-100638-2.00003-1.

Date

20.02.2023

Type

Article accepted

Identifier

DOI: 10.24425/ame.2023.144816
×