Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lower Carboniferous limestone has been extracted in the “Czatkowice” open-pit hill-slope quarry in southern Poland since 1947, for the needs of metallurgical and building industries, as well as farming. We can distinguish two aquifers in the Czatkowice area: the Quaternary porous aquifer and the Carboniferous fissure-porous one. Two vertical zones representing different hydrodynamic characteristics can be indentified in the Carboniferous formations. One is a weathering zone and the other one the zone of fissures and interbedding planes. Groundwater inflows into the quarry workings have been observed at the lowest mining level (+315 m above the sea level (asl)) for over 30 years. This study concerns two hypotheses of the sources of such inflows originating either from (a) the aeration zone or from (b) the saturation zone. Inflows into the quarry combine into one stream flowing gravitationally to the doline under the pile in the western part of the quarry. This situation does not cause a dewatering need. Extending eastward mining and lowering of the exploitation level lead to increased inflows.
Go to article

Authors and Affiliations

Wei Li
Huan Zhao
Meiling Liu
Siqi Li
Wenfeng Sun
Lei Wang
Download PDF Download RIS Download Bibtex

Abstract

The reports of Intergovernmental Panel for Climate Change indicate that the growing emission of greenhouse gases, produced from the combustion of fossil fuels, mainly carbon dioxide, leads to negative climate changes. Therefore, the methods of mitigating the greenhouse gases emission to the atmosphere, especially of carbon dioxide, are being sought. Numerous studies are focused on so-called geological sequestration, i.e. injecting carbon dioxide to appropriate geological strata or ocean waters. One of the methods, which are not fully utilized, is the application of appropriate techniques in agriculture. The plant production in agriculture is based on the absorption of carbon dioxide in the photosynthesis process. Increasing the plant production directly leads to the absorption of carbon dioxide. Therefore, investigation of carbon dioxide absorption by particular crops is a key issue. In Poland, ca. 7.6 mln ha of cereals is cultivated, including: rye, wheat, triticale, oat and barley. These plants absorb approximately 23.8 mln t C annually, including 9.8 mln t C/yr in grains, 9.4 mln t C/yr in straw and 4.7 mln t C/yr in roots. The China, these cereals are cultivated on the area over 24 mln ha and absorb 98.9 mln t C/yr, including 55 mln tC/yr in grains, 36 in straw, and 7.9 mln t C/yr in roots. The second direction for mitigating the carbon dioxide emission into the atmosphere involves substituting fossil fuels with renewable energy sources to deliver primary energy. Cultivation of winter cereals as cover crops may lead to the enhancement of carbon dioxide removal from the atmosphere in the course of their growth. Moreover, the produced biomass can be used for energy generation.

Go to article

Authors and Affiliations

Lucjan Pawłowski
Małgorzata Pawłowska
Wojciech Cel
Lei Wang
Chong Li
Tingting Mei
Download PDF Download RIS Download Bibtex

Abstract

In this work, a highly effective catalyst (MoO3) is synthesized and applied for catalytic wet air oxidation (CWAO) treatment of pharmaceutical wastewater. The catalyst is systematically characterized to investigate the morphology, crystal structure and chemical composition, and the findings demostrated that MoO3 catalyst is successfully synthesized. The degradation mechanism is also illustrated by the density functional theory (DFT) calculation. The degradation experiments confirm that MoO3 catalyst exhibits excellent catalytic performance in CWAO, and the removal rate of TOC (Total Organic Carbon) and COD (Chemical Oxygen Demand) is achieved to more than 93%. The catalyst doses, reaction temperature and reaction time have a significant impact on the removal of pollutants. The degradation process of pollutants in CWAO could be satisfactorily fitted by the second-order kinetics. Besides, MoO3 displays a favorable stability as CWAO catalyst. DFT calculation illustrates that MoO3 catalyst is a typical indirect band gap semiconductor. Moreover, the high temperature environment provides the thermal excitation energy, which favors to the free electrons nearing Fermi level to escape the material surface, and excites them to the conduction band, then directly reduces the pollutants in CWAO. These findings demonstrate that MoO3 can be used as an efficient and excellent catalyst for CWAO of pharmaceutical wastewater.
Go to article

Bibliography

  1. Ahsani, M., Hazrati, H., Javadi, M., Ulbricht, M., & Yegani, R. (2020). Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Separation and Purification Technology, 249,116938. DOI: 10.1016/j.seppur.2020.116938
  2. Aniszewski, A. (2020). Impact of ground adsorption capacity on he change on the chemical composition of groundwater. Archives of Environmental Protection, 46,2, pp. 35-41. DOI: 10.24425/aep.2020.133472
  3. Chen, C., Cheng, T., Shi, Y., & Tian, Y. (2014a). Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 33,3, pp. 29-35. DOI: 10.30492/IJCCE.2014.11328
  4. Chen, C., Cheng, T., Wang, Z. L., & Han, C. H. (2014b). Removal of Zn2+ in aqueous solution by Linde F (K) zeolite prepared from recycled fly ash. Journal of the Indian Chemical Society 91,2, pp. 285-291 https://www.researchgate.net/publication/295591718_Removal_of_Zn2_in_aqueous_solution_by_Linde_F_K_zeolite_prepared_from_recycled_fly_ash
  5. Chen, C., Cheng, T., Zhang, X., Wu, R., & Wang, Q. (2019a). Synthesis of an Efficient Pb Adsorption Nano-Crystal under Strong Alkali Hydrothermal Environment Using a Gemini Surfactant as Directing Agent. Journal of the Chemical Society of Pakistan, 41,6, pp. 1034-1038.
  6. Chen, C., Chenhao, Y., Ting, C., Xiao, Z., & Jiandong, Z. (2019b). Preparation of Mo-Na composite catalyst and its application in pharmaceutical wastewater treatment. Industrial Water Treatment 39,8, pp. 77-81.(in Chinese)
  7. Chen, C., Jiandong, Z., Ting, C., & Xiao, Z. (2018). Preparation of Nano-manganese Cerium/γ-Al2O3 Composite Catalyst and Its Catalytic Wet Air Oxidation Treatment of Antibiotic Production Wastewater. Journal of Synthetic Crystals 47,11, pp. 2288-2294. (in Chinese)
  8. Chen, C., Li, Q., Shen, L., & Zhai, J. (2012). Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environ Technol 33,10-12, pp. 1313-1321. DOI: 10.1080/09593330.2011.626797
  9. Chen, M., Ren, L., Qi, K., Li, Q., Lai, M., Li, Y., Li, X., & Wang, Z. (2020). Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresource Technology, 311,123579. DOI: 10.1016/j.biortech.2020.123579
  10. Cheng, T., Chen, C., Tang, R., Han, C.-H., & Tian, Y. (2018). Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution Onto Fly Ash-Based Linde F(K) Zeolite. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 37,1, pp. 61-72. DOI: 10.30492/IJCCE.2018.31971
  11. Cheng, T., Chen, C., Wang, L., Zhang, X., Ye, C., Deng, Q., & Chen, G. (2021). Synthesis of Fly Ash Magnetic Glass Microsphere@BiVO4 and Its Hybrid Action of Visible-Light Photocatalysis and Adsorption Process. Polish Journal of Environmental Studies, 30,3, pp. 1-14. DOI: 10.15244/pjoes/127918
  12. Coimbra, R. N., Calisto, V., Ferreira, C. I. A., Esteves, V. I., & Otero, M. (2019). Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arabian Journal of Chemistry, 12,8, pp. 3611-3620. DOI: 10.1016/j.arabjc.2015.12.001
  13. Dong, S., Cui, L., Zhang, W., Xia, L., & Sun, J. J. C. E. J. (2020). Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater. Chemical engineering journal 384,123279. DOI: 10.1016/j.cej.2019.123279
  14. Ferrer-Polonio, E., Fernandez-Navarro, J., Iborra-Clar, M.-I., Alcaina-Miranda, M.-I., & Antonio Mendoza-Roca, J. (2020). Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. Journal of Environmental Management 33,3, pp. 29-35. DOI: 10.1016/j.jenvman.2020.110368
  15. Guo, J., Fortunato, L., Deka, B. J., Jeong, S., & An, A. K. (2020). Elucidating the fouling mechanism in pharmaceutical wastewater treatment by membrane distillation. Desalination, 475,114148. DOI: 10.1016/j.desal.2019.114148
  16. He, Y., Chen, Y.-g., Zhang, K.-n., Ye, W.-m., & Wu, D.-y. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45,3, pp. 11-20. DOI 10.24425/aep.2019.128636
  17. Hofman-Caris, C. H. M., Siegers, W. G., van de Merlen, K., de Man, A. W. A., & Hofman, J. A. M. H. (2017). Removal of pharmaceuticals from WWTP effluent: Removal of EfOM followed by advanced oxidation. Chemical Engineering Journal, 327,1, pp. 514-521. DOI: 10.1016/j.cej.2017.06.154
  18. Hohenberg, P. & Kohn, W. (1964). InhomogeIIeous Electron Gas. Physical Review, 136,3B, pp. 864-871
  19. Huang, J., Wang, X., Li, S. & Wang, Y. (2010). ZnO/MoO3 mixed oxide nanotube: A highly efficient and stable catalyst for degradation of dye by air under room conditions. Applied Surface Science, 257,1, pp. 116-121. DOI: 10.1016/j.apsusc.2010.06.046
  20. Huang, P. R., He, Y., Cao, C. & Lu, Z. H. (2014). Impact of lattice distortion and electron doping on alpha-MoO3 electronic structure. Sci Rep. 4,7131, pp. 1-7. DOI: 10.1038/srep07131
  21. Kang, J., Zhan, W., Li, D., Wang, X., Song, J. & Liu, D. (2011). Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B-6 production. Physics and Chemistry of the Earth, 36,9-11, pp. 455-458. DOI: 10.1016/j.pce.2010.03.043
  22. Khan, A. H., Khan, N. A., Ahmed, S., Dhingra, A., Singh, C. P., Khan, S. U., Mohammadi, A. A., Changani, F., Yousefi, M., Alam, S., Vambol, S., Vambol, V., Khursheed, A. & Ali, I. (2020). Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. Journal of Cleaner Production, 269,122411. DOI: 10.1016/j.jclepro.2020.122411
  23. Klancar, A., Trontelj, J., Kristl, A., Meglic, A., Rozina, T., Justin, M. Z. & Roskar, R. (2016). An advanced oxidation process for wastewater treatment to reduce the ecological burden from pharmacotherapy and the agricultural use of pesticides. Ecological Engineering, 97,186-195. DOI: 10.1016/j.ecoleng.2016.09.010
  24. Kohn, W. & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133.
  25. Kresse, & Furthmuller (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review. B, Condensed matter 54,16, pp. 11169-11186
  26. Li, W., Zhao, S., Qi, B., Du, Y., Wang, X. & Huo, M. (2009). Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Applied Catalysis B-Environmental, 92,3-4, pp. 333-340. DOI: 10.1016/j.apcatb.2009.08.012
  27. Li, Y., Shen, J., Quan, W., Diao, Y., Wu, M., Zhang, B., Wang, Y., & Yang, D. (2020). 2D/2D p-n Heterojunctions of CaSb2O6/g-C(3)N(4)for Visible Light-Driven Photocatalytic Degradation of Tetracycline. European Journal of Inorganic Chemistry, 2020,40, pp. 3852-3858. DOI: 10.1002/ejic.202000635
  28. Tan, l., Yu, C., Wang, M., Zhang, S. & Sun, J., Dang, S. & Sun, J. (2019). Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Applaied Surface Science, 467-468, pp. 286-292. DOI: 10.1016/j.apsusc.2018.10.067
  29. Lunagomez Rocha, M. A., Del Angel, G., Torres-Torres, G., Cervantes, A., Vazquez, A., Arrieta, A. & Beltramini, J. N. (2015). Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today 250,145-154. DOI: 10.1016/j.cattod.2014.09.016
  30. Ma, Y., Jia, Y., Jiao, Z., Wang, L., Yang, M., Bi, Y. & Qi, Y. (2015). Facile synthesize α-MoO3 nanobelts with high adsorption property. Materials Letters, 157,53-56. DPOI: 10.1016/j.matlet.2015.05.095
  31. Mucha, Z. & Kułakowski, P. (2016). Turbidity measurements as a tool of monitoring and control of the SBR effluent at the small wastewater treatment plant – preliminary study. Archives of Environmental Protection, 42,3, pp. 33-36. DOI 10.1515/aep-2016-0030
  32. Mukimin, A., Vistanty, H. & Zen, N. (2020). Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics. Separation and Purification Technology, 241,116728. DOI: 10.1016/j.seppur.2020.116728
  33. Parvas, M., Haghighi, M. & Allahyari, S. (2019). Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 12,7, pp. 1298-1307. DOI: 10.1016/j.arabjc.2014.10.043
  34. Perdew, J., Burke, K. & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical review letters, 77,3865-3868. DOI: 10.1103/PhysRevLett.77.3865
  35. Perdew, J., Chevary, J. A., H, V., Jackson, K., Pederson, M., Singh, D. & Fiolhais, C. (1992). Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical review. B, Condensed matter, 46,6671-6687.
  36. Phoon, B. L., Ong, C. C., Saheed, M. S. M., Show, P.-L., Chang, J.-S., Ling, T. C., Lam, S. S. & Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400,122961. DOI: 10.1016/j.jhazmat.2020.122961
  37. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M. & Schroder, H. F. (2004). Elucidation of the behavior of tannery wastewater under advanced oxidation conditions. Chemosphere, 56,5, pp. 411-23. DOI: 10.1016/j.chemosphere.2004.04.012
  38. Sushma, Kumari, M. & Saroha, A. K. (2018). Treatment of toxic industrial effluent containing nitrogenous organic compounds by integration of catalytic wet air oxidation at atmospheric pressure and biological processes. Journal of Environmental Chemical Engineering, 6,5, pp. 6256-6262. DOI:10.1016/j.jece.2018.09.057
  39. Urbanowska, A. & Kabsch-Korbutowicz, M. (2019). Nanofiltration as an effective method of NaOH recovery from regenerative solutions. Archives of Environmental Protection, 45,2, pp. 31-36. DOI: 10.24425/aep.2019.127978
  40. Verma, A., Kaur, H. & Dixit, D. (2013). Photocatalytic, Sonolytic and Sonophotocatalytic Degradation of 4-Chloro-2-Nitro Phenol. Archives of Environmental Protection, 39,2, pp. 17-28. DOI: 10.2478/aep-2013-0015
  41. Wang, G., Wang, D., Xu, Y., Li, Z. & Huang, L. (2020a). Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. Science of the Total Environment, 739,140166. DOI:10.1016/j.scitotenv.2020.140166
  42. Wang, J., Dong, S., Yu, C., Han, X., Guo, J. & Sun, J. (2017). An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catalysis Communications, 92,100-104. DOI: 10.1016/j.catcom.2017.01.013
  43. Wang, P., Liang, Y. N., Zhong, Z. & Hu, X. (2020b). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233,15, pp. 11590. DOI: 10.1016/j.seppur.2019.115960
  44. Xu, K., Liao, N., Zheng, B. & Zhou, H. (2020). Adsorption and diffusion behaviors of H2, H2S, NH3, CO and H2O gases molecules on MoO3 monolayer: A DFT study. Physics Letters A, 384,21, pp. 1-5. DOI: 10.1016/j.physleta.2020.126533
  45. Yadav, A., Teja, A. K. & Verma, N. (2016). Removal of phenol from water by catalytic wet air oxidation using carbon bead – supported iron nanoparticle – containing carbon nanofibers in an especially configured reactor. Journal of Environmental Chemical Engineering, 4,2, pp. 1504-1513. DOI: 10.1016/j.jece.2016.02.021
  46. Zhang, X., Cheng, T., Chen, C., Wang, L., Deng, Q., Chen, G. & Ye, C. (2020). Synthesis of a novel magnetic nano-zeolite and its application as an efficient heavy metal adsorbent. Materials Research Express, 7,8, pp. 085007. DOI: 10.1088/2053-1591/abab43
  47. Zhang, Y., Zhang, Z., Yan, Q. & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511,47-58. DOI: 10.1016/j.apcata.2015.11.035
  48. Zou, H., Ma, W. & Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation. Archives of Environmental Protection, 41,4, pp. 33-39. DOI: 10.1515/aep-2015-0037
Go to article

Authors and Affiliations

Chen Chen
1
Ting Cheng
2
Lei Wang
1
ORCID: ORCID
Yuan Tian
1
Qin Deng
1
Yisu Shi
1

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, China
  2. School of Environmental Ecology, Jiangsu City Vocational College, China
Download PDF Download RIS Download Bibtex

Abstract

WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Go to article

Authors and Affiliations

ManFeng Gong
1 2
GuangFa Liu
1 2
Meng Li
1 3
XiaoQun Xia
1
Lei Wang
1
ORCID: ORCID
JianFeng Wu
1 2
ShanHua Zhang
1 2
Fang Mei
1

  1. Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  2. Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  3. Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
Download PDF Download RIS Download Bibtex

Abstract

Gas explosions are major disasters in coal mining, and they typically cause a large number of deaths, injuries and property losses. An appropriate understanding of the effects of combustible gases on the characteristics of methane explosions is essential to prevent and control methane explosions. FLACS software was used to simulate an explosion of a mixture of CH4 and combustible gases (C2H4, C2H6, H2, and CO) at various mixing concentrations and different temperatures (25, 60, 100, 140 and 180℃). After adding combustible gases to methane at a constant volume and atmospheric pressure, the adiabatic flame temperature linearly increases as the initial temperature increases. Under stoichiometric conditions (9.5% CH4-air mixture), the addition of C2H4 and C2H6 has a greater effect on the adiabatic flame temperature of methane than H2 and CO at different initial temperatures. Under the fuel-lean CH4-air mixture (7% CH4-air mixture) and fuel-rich mixture (11% CH4-air mixture), the addition of H2 and CO has a greater effect on the adiabatic flame temperature of methane. In contrast, the addition of combustible gases negatively affected the maximum explosion pressure of the CH4-air mixture, exhibiting a linearly decreasing trend with increasing initial temperature. As the volume fraction of the mixed gas increases, the adiabatic flame temperature and maximum explosion pressure of the stoichiometric conditions increase. In contrast, under the fuel-rich mixture, the combustible gas slightly lowered the adiabatic flame temperature and the maximum explosion pressure. When the initial temperature was 140℃, the fuel consumption time was approximately 8-10 ms earlier than that at the initial temperature of 25℃. When the volume fraction of the combustible gas was 2.0%, the consumption time of fuel reduced by approximately 10 ms compared with that observed when the volume fraction of flammable gas was 0.4%.
Go to article

Bibliography

[1] Z. Li, M. Gong, E. Sun, J. Wu, Y. Zhou, Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy 36, 5521-5524 (2011). DOI: https://doi.org/10.1016/j.energy.2011.07.023
[2] B. Su, Z. Luo, T. Wang, J. Zhang, F. Cheng, Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion. Int. J. Hydrog. Energy 45, 12225-12235 (2020). DOI: https://doi. org/10.1016/j.ijhydene.2020.02.133
[3] T. Wang, Z. Luo, H. Wen, F. Cheng, J. Deng, J. Zhao, Z. Guo, J. Lin, K. Kang, W. Wang, Effects of flammable gases on the explosion characteristics of CH4 in air. J. Loss Prev. Process Ind. 49, 183-190 (2017). DOI: https:// doi.org/10.1016/j.jlp.2017.06.018
[4] G. Cui, S. Wang, J. Liu, Z. Bi, Z. Li, Explosion characteristics of a methane / air mixture at low initial temperatures. Fuel 234, 886-893 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.07.139
[5] M. Gieras, R. Klemens, G. Rarata, P. Wolan, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm 3 at normal and elevated temperature. J. Loss Prev. Process Ind. 19, 263-270 (2006). DOI: https://doi.org/10.1016/j.jlp.2005.05.004
[6] H . Li, J. Deng, C.M. Shu, C.H. Kuo, Y. Yu, X. Hu, Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20-L sphere: Computational fluid dynamics modelling and experimental validation. Fuel 276, 118028 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.118028
[7] M. Mitu, V. Giurcan, D. Razus, M. Prodan, D. Oancea, Propagation indices of methane-air explosions in closed vessels. J. Loss Prev. Process Ind. 47, 110-119 (2017). DOI: https://doi.org/10.1016/j.jlp.2017.03.001
[8] M. Mitu, M. Prodan, V. Giurcan, D. Razus, D. Oancea, Influence of inert gas addition on propagation indices of methane-air deflagrations. Process Saf. Environ. Protect. 102, 513-522 (2016). DOI: https://doi.org/10.1016/j. psep.2016.05.007
[9] B. Su, Z. Luo, T. Wang, C. Xie, F. Cheng, Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater. 404, 123680 (2021). DOI: https://doi.org/10.1016/j.jhazmat.2020.123680
[10] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley, Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame. 121, 41-58 (2000). DOI: https://doi.org/10.1016/S0010-2180(99)00142-X
[11] L. Liu, Z. Luo, T. Wang, F. Cheng, S. Gao, H. Liang, Effects of initial temperature on the deflagration characteristics and flame propagation behaviors of CH4 and its blends with C2H6, C2H4, CO, and H2. Energy Fuels 35, 785-795 (2021). DOI: https://doi.org/10.1021/acs.energyfuels.0c03506
[12] Z. Luo, L. Liu, F. Cheng, T. Wang, B. Su, J. Zhang, S. Gao, C. Wang, Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J. Loss Prev. Process Ind. 58, 8-16 (2019). DOI: https://doi.org/10.1016/j.jlp.2019.01.004
[13] M. Reyes, F. V Tinaut, A. Horrillo, A. Lafuente, Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684-697 (2018). DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.165
[14] T. Wang, Z. Luo, H. Wen, J. Zhao, F. Cheng, C. Liu, Y. Xiao, J. Deng, Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf. Environ. Protect. 140, 34 (2019). DOI: https://doi.org/10.1016/j.psep.2020.05.005
[15] T. Wang, Z. Luo, H. Wen, F. Cheng, L. Liu, The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214, 119042 (2021). DOI: https://doi.org/10.1016/j.energy.2020.119042
[16] Y. Zhang, C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, Q. Li, Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242, 287-294 (2019). DOI : https://doi.org/10.1016/j.fuel.2019.01.043
[17] J. Zhao, J. Deng, T. Wang, J. Song, Y. Zhang, C.M. Shu, Q. Zeng, Assessing the effectiveness of a high-temperatureprogrammed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169, 587-596 (2019). DOI: https://doi.org/10.1016/j.energy.2018.12.100
[18] A.A. Pekalski, H.P. Schildberg, P.S.D. Smallegange, S.M. Lemkowitz, J.F. Zevenbergen, M. Braithwaite, H.J. Pasman, Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions. Process Saf. Environ. Protect. 83, 421-429 (2005).
[19] K. Holtappels, Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise – Part 1: methane, hydrogen and propylene Contact. Explosion 1, 1-149 (2002).
[20] M. Gieras, R. Klemens, G., Experimental Studies of Explosions of Methane-Air Mixtures in a Constant Volume Chamber. Combust. Sci. Technol. 37-41 (2009). DOI: https://doi.org/10.1080/00102200802665102
[21] E. Salzano, F. Cammarota, A. Di Benedetto, V. Di Sarli, Explosion behavior of hydrogene methane / air mixtures. J. Loss Prev. Process Ind. 25, 443-447 (2012). DOI: https://doi.org/10.1016/j.jlp.2011.11.010
[22] K.L. Cashdollar, I.A. Zlochower, G.M. Green, R.A. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind. 13, 327-340 (2000).
[23] H . Li, J. Deng, X. Chen, C.M. Shu, C.H. Kuo, X. Zhai, Q. Wang, X. Hu, Transient temperature evolution of pulverized coal cloud deflagration in a methane-oxygen atmosphere. Powder Technol. 366, 294-304 (2020). DOI: https://doi.org/10.1016/j.powtec.2020.02.042
[24] S. Zhang, H. Ma, X. Huang, S. Peng, Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel. Process Saf. Environ. Protect. 140, 100-110 (2020). DOI: https://doi.org/10.1016/j.psep.2020.04.025
[25] Y. Zhu, D. Wang, Z. Shao, X. Zhu, C. Xu, Y. Zhang, Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Saf. Environ. Protect. 135, 101-112 (2019). DOI: https://doi.org/10.1016/j.psep.2019.12.022
[26] J. Deng, F. Cheng, Y. Song, Z. Luo, Y. Zhang, Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane. J. Loss Prev. Process Ind. 36, 45-53 (2015). DOI: https://doi.org/10.1016/j.jlp.2015.05.002
[27] Gexcon, FLACS Manual. Gexcon, 2009.
[28] Z. Luo, R. Li, T. Wang, F. Cheng, Y. Liu, Z. Yu, S. Fan, X. Zhu, Explosion pressure and flame characteristics of CO/CH4/air mixtures at elevated initial temperatures. Fuel 268, 117377 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.117377
Go to article

Authors and Affiliations

Zhenmin Luo
1 2
ORCID: ORCID
Litao Liu
1 2
ORCID: ORCID
Shuaishuai Gao
1 2
ORCID: ORCID
Tao Wang
1 2 3
ORCID: ORCID
Bin Su
1 2
ORCID: ORCID
Lei Wang
1 2
ORCID: ORCID
Yong Yang
4 2
ORCID: ORCID
Xiufang Li
4
ORCID: ORCID

  1. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR China
  2. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, 58, Yanta Mid. Rd, Xi’an, 710054, Shaanxi, PR China
  3. Xi’an University of Science and Technology, Postdoctoral Program, 58, Yanta Mid. Rd., Xi’an 710054, Shaanxi, PR China
  4. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR

This page uses 'cookies'. Learn more