Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of complex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms. The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and allows obtaining well-defined final topologies.
Go to article

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.
Go to article

Authors and Affiliations

Katarzyna Tajs-Zielińska
1
Bogdan Bochenek
1

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Celem artykułu jest pokazanie, w jaki sposób zastosowanie teorii dyskursu do problematyzowania rozumienia religii i sfery publicznej może skierować uwagę na nowe aspekty w badaniu publicznej roli religii. Artykuł składa się z trzech części. W pierwszej, krótko prezentuję dotychczasowe badania na temat publicznej obecności religii, ze szczególnym uwzględnieniem koncepcji teorii deprywatyzacji i religii publicznej José Casanovy. W drugiej części pokazuję, jak przyjęte przez Casanovę założenia dotyczące religii oraz sfery publicznej przekładają się na ograniczenia dla rozumienia i badania publicznej obecności religii. W odpowiedzi na te krytyczne głosy, w trzeciej części, wskazuję, w jaki sposób teoria dyskursu może być przydatna w radzeniu sobie z takimi ograniczeniami, a w rezultacie pozwolić na trafniejszą diagnozę oraz interpretację roli religii w sferze publicznej.

Go to article

Authors and Affiliations

Katarzyna Zielińska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

W artykule analizujemy konstruowanie męskości przez polskich migrantów zaangażowanych w działalność polskich organizacji Kościoła katolickiego za granicą. Przedstawiamy wyniki badań, które przeprowadziłyśmy w latach 2016–2018 z aktywnymi religijnie polskimi mężczyznami migrantami, w trzech krajach: Anglii, Belgii i Szwecji. Ramą heurystyczną analizy jest koncepcja męskości hybrydycznej, rozumianej jako konglomerat społecznych praktyk i reguł społecznych wywodzących się z różnych wzorców płci. Pokazujemy, jak w procesie selektywnego włączania znaczeń przypisywanych np. kobiecości konstruowany jest nowy wzór męskości. Omawiamy, w jaki sposób religia staje się mechanizmem stratyfikacji i mobilności w ramach hierarchii płci. Osadzenie męskości w znaczeniach religijnych wynosi polską religijną męskość na dominujące pozycje w porządku symbolicznym.
Go to article

Bibliography

1. Anderson, Eric, Marc McCormack. 2018. Inclusive Masculinity Theory: Overview, Reflection and Refinement. Journal of Gender Studies, 27, 5: 547–561. DOI: 10.1080/09589236.2016.1245605.
2. Arxer, Steven L. 2011. Hybrid Masculine Power: Reconceptualizing the Relationship between Homosociality and Hegemonic Masculinity. Humanity & Society, 35, 4: 390–422. DOI: 10.1177/016059761103500404.
3. Aune, Kristin. 2010. Fatherhood in British Evangelical Christianity: Negotiating with Mainstream Culture. Men and Masculinities, 13, 2: 168–189. DOI: 10.1177/1097184X10390027.
4. Avila, Ernestine M. 2002. Reviewed Work(s): Servants of Globalization: Women, Migration, and Domestic Work by Rhacel Salazar Parreñas. Contemporary Sociology, 31, 4: 396–397. DOI: 10.2307/3089067.
5. Avishai, Orit. 2008. ‘Doing Religion’ In a Secular World: Women in Conservative Religions and the Question of Agency. Gender & Society, 22, 4: 409–433. DOI: 10.1177/0891243208321019.
6. Bell, Justyna, Paula Pustułka. 2017. Multiple Masculinities of Polish Migrant Men. NORMA, 12, 2: 127–143. DOI: 10.1080/18902138.2017.1341677.
7. Berger, Peter L. 1997. Święty baldachim. Elementy socjologicznej teorii religii. Przekład Włodzimierz Kurdziel. Kraków: Zakład Wydawniczy Nomos.
8. Bridges, Tristan, C.J. Pascoe. 2014. Hybrid Masculinities: New Directions in the Sociology of Men and Masculinities. Sociology Compass, 8, 3: 246–258. DOI: 10.1111/soc4.12134.
9. Burchardt, Marian. 2018. Saved from Hegemonic Masculinity? Charismatic Christianity and Men’s Responsibilization in South Africa. Current Sociology, 66, 1: 110–127. DOI: 10.1177/0011392117702429.
10. CBOS. 2021. Religijność młodych na tle ogółu społeczeństwa, https://www.cbos.pl/SPISKOM.POL/2021/K_144_21.PDF. 11. Charsley, Katharine, Helena Wray. 2015. Introduction: The Invisible (Migrant) Man. Men and Masculinities, 18, 4: 403–423. DOI: 10.1177/1097184X15575109.
12. Demetriou, Demetrakis. 2001. Connell’s Concept of Hegemonic Masculinity: A Critique. Theory and Society, 30, 3: 337–361.
13. Diefendorf, Sarah. 2015. After the Wedding Night. Sexual Abstinence and Masculinities over the Life Course Gender & Society, 29, 5: 647–669. DOI: 10.1177/ 0891243215591597.
14. Draguła, Andrzej. 2019. Reaktywacja wzorca mężczyzny jako miles Christi. Czas Kultury, 15, 01: 39–44.
15. Dube, Siphiwe Ignatius. 2014. The Promise Keepers Canada and Christian Relational Masculinities. Religious Studies and Theology, 33, 2: 173–192.
16. Eisen, Daniel B., Liann Yamashita. 2019. Borrowing from Femininity: The Caring Man, Hybrid Masculinities, and Maintaining Male Dominance. Men and Masculinities, 22, 5: 801–820. DOI: 10.1177/1097184X17728552.
17. Fiałkowska, Kamila. 2019. Negotiating masculinities: Polish male migrants in the UK – insights from an intersectional perspective. NORMA, 14, 2: 112–127. DOI: 10.1080/18902138.2018.1533270.
18. Garapich, Michał P. 2009. Wyjechałem ot, tak... i nie jestem emigrantem. Polski dominujący dyskurs migracyjny i jego kontestacje na przykładzie Wielkiej Brytanii. Studia Migracyjne – Przegląd Polonijny, 4: 41–65.
19. Gelfer, Joseph. 2010. Evangelical and Catholic Masculinities in Two Fatherhood Ministries. Feminist Theology, 19, 1: 36–53. DOI: 10.1177/0966735010372167.
20. George, Sheba Mariam. 2005. When Women Come First. Gender and Class in Transnational Migration. Berkeley / Los Angeles / London: University of California Press.
21. Gender Equality Index https://eige.europa.eu/gender-equality-index
22. Graff, Agnieszka, Elżbieta Korolczuk. 2021. Anti-Gender Politics in the Populist Moment. Routledge.
23. Hirose, Akihiko, Kay Kei-ho Pih. 2010. Men Who Strike and Men Who Submit: Hegemonic and Marginalized Masculinities in Mixed Martial Arts. Men and Masculinities, 13, 2: 190–209. DOI: 10.1177/1097184X09344417.
24. Hondagneu-Sotelo, Pierrette. 2013. New Directions in Gender and Immigration Research. In: L.O. Casas, N. Riba-Mateos, eds. The International Handbook on Gender, Migration and Transnationalism: Global and Development Perspectives. Edward Elgar Publishers, 233–245.
25. Kilkey, Majella, Ewa Palenga-Möllenbeck. 2016. Introduction: Family Life in an Age of Migration and Mobility: Introducing a Global and Family Life-Course Perspective. In: M. Kilkey, E. Palenga-Möllenbeck, eds. Family Life in an Age of Migration and Mobility. Palgrave.
26. Van Klinken, Adriaan S. 2012. Men in the Remaking: Conversion Narratives and Born-Again Masculinity in Zambia. Journal of Religion in Africa, 42, 3: 215–239.
27. Kluczyńska, Urszula. 2021. Męskości hybrydowe, czyli wilk w owczej skórze. Definiowanie konceptu. Przegląd Krytyczny, 3, 2: 35–50. DOI: 10.14746/pk.2021.3.2.2.
28. Krotofil, Joanna. 2013. Religia w procesie kształtowania tożsamości wśród polskich migrantów w Wielkiej Brytanii. Kraków: Nomos.
29. Leszczyńska, Katarzyna. 2016. Płeć w instytucje uwikłana: reprodukowanie wzorców kobiecości i męskości przez świeckie kobiety i świeckich mężczyzn w organizacjach administracyjno-ewangelizacyjnych Kościoła rzymskokatolickiego w Polsce. Warszawa: Wydawnictwo Naukowe Scholar.
30. Leszczyńska, Katarzyna, Sylwia Urbańska, Katarzyna Zielińska, 2018. Religion and Gender in Migration to and from Central and Eastern Europe – Introductory Reflections. Central and Eastern European Migration Review, 7, 2: 105–110. DOI: 10.17467/ceemr.2018.15
31. Leszczyńska, Katarzyna, Sylwia Urbańska, Katarzyna Zielińska. 2020. Poza granicami. Płeć społeczno-kulturowa w katolickich organizacjach migracyjnych. Kraków: Nomos.
32. Leszczyńska, Katarzyna. 2019. Between womanhood as ideal and womanhood as a social practice: women’s experiences in the Church organisation in Poland. Journal of Contemporary Religion, 34, 2: 311–330. DOI: 10.1080/13537903.2019.1621550.
33. Montes, Veronica. 2013. The Role of Emotions in the Construction of Masculinity: Guatemalan Migrant Men, Transnational Migration, and Family Relations. Gender & Society, 27, 4: 469–490. DOI: 10.1177/0891243212470491.
34. Nyhagen, Line. 2020. ‘It’s Not Macho, Is It?’: Contemporary British Christian Men’s Constructions of Masculinity. Journal of Men’s Studies, 1–19. DOI: 10.1177/1060826520981719.
35. Osella, Filippo, Caroline Osella. 2010. Migration, Money and Masculinity in Kerala. Journal of the Royal Anthropological Institute, 6, 1: 117–133. DOI: 10.1111/1467-9655.t01-1-00007.
36. Pedraza, Silvia. 1991. Women and Migration: The Social Consequences of Gender. Annual Review of Sociology, 17: 303–325.
37. Pew Research Center. 2018. Eastern and Western Europeans Differ on Importance of Religion, Views of Minorities, and Key Social Issues, https://www.pewforum. org/2018/10/29/eastern-and-western-europeans-differ-on-importance-of-religion-views-of-minorities-and-key-social-issues/
38. Pustułka, Paula, Justyna Struzik, Magdalena Ślusarczyk. 2015. Caught between Breadwinning and Emotional Provisions – the Case of Polish Migrant Fathers in Norway. Studia Humanistyczne AGH, 14, 2: 117. DOI: 10.7494/human.2015.14.2.117.
39. Sadłoń, Wojciech SAC, Robert Stępisiewicz. 2015. Religijność i aktywność kobiet w kościele katolickim w Polsce. Instytut Statystyki Kościoła Katolickiego https://iskk.pl/images/stories/Instytut/dane/ISKK_Kobiety_Religijnosc_2015.pdf.
40. Sumerau, J. Edward. 2012. That’s What a Man Is Supposed to Do”: Compensatory Manhood Acts in an LGBT Christian Church. Gender & Society, 26, 3: 461–487. DOI: 10.1177/0891243212439748.
41. Szczukowski, Ireneusz. 2019. „Katolik to nie wypacykowany goguś”. O męskim chrześcijaństwie czasu krucjat. Świat Tekstów. Rocznik Słupski, 17: 165–174.
42. Szwed, Anna, Katarzyna Zielińska. 2017. A War on Gender? The Roman Catholic Church’s Discourse on Gender in Poland. In: S.P. Ramet, I. Borowik, eds. Religion, Politics, and Values in Poland: Continuity and Change Since 1989. New York: Palgrave Macmillan, 113–136.
43. Turner, Victor, 2005. Gry społeczne, pola i metafory. Symboliczne działanie w społeczeństwie. Przekład Wojciech Usakiewicz. Kraków: UJ.
44. Trąbka, Agnieszka, Katarzyna Wojnicka. 2017. Self-Positioning as a Man in Transnational Contexts: Constructing and Managing Hybrid Masculinity. NORMA: International Journal for Masculinity Studies 12, 2: 144–158. DOI:10.1080/18902138.2017.1341768.
45. Trzebiatowska, Marta, Steve Bruce. 2012. Why Are Women More Religious than Men? Oxford University Press.
46. Urbańska, Sylwia. 2016. Czego nie dowiemy się o globalnej rewolucji płci bez badania religii w życiu migrantów. Studia Humanistyczne AGH, 15, 3: 51–67. DOI: 10.7494/human.2016.15.3.51-67.
47. Urbańska, Sylwia. 2015. Matka Polka na odległość. Z doświadczeń migracyjnych robotnic 1989–2010. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
48. Urbańska, Sylwia. 2018. Assessing the Significance of Religion in Gender and Migration Studies: New Avenues for Scholarly Inquiry. Central and Eastern European Migration Review CEEMR, 7, 2: 111–24. DOI: 10.17467/ceemr.2018.16.
49. Wojnicka, Katarzyna, Magdalena Nowicka. 2022. Understanding Migrant Masculinities through a Spatially Intersectional Lens. Men and Masculinities, 25, 2: 232–251. DOI: 10.1177/1097184X20986224.

Go to article

Authors and Affiliations

Katarzyna Leszczyńska
1
ORCID: ORCID
Katarzyna Zielińska
2
ORCID: ORCID
Sylwia Urbańska
3
ORCID: ORCID

  1. AGH w Krakowie
  2. Uniwersytet Jagielloński
  3. Uniwersytet Warszawski

This page uses 'cookies'. Learn more