Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Is it possible to revitalize Europe without external interference and a shift in the geopolitical situation outside the Continent? An answer to this question is here offered by Prof. Jan Zielonka, a political scientist analyzing change in Central and Eastern Europe and a lecturer at the European Studies Centre, St. Antony’s College, University of Oxford.

Go to article

Authors and Affiliations

Jan Zielonka
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Jan Zielonka
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to identify concentration levels of different chemical forms of mercury (TGM, TPM) in the ambient air in selected areas of the Silesian Region, characterized by low and high mercury emission. Based on the obtained data TGM and TPM concentration levels were determined. The project also focused on determination of dry and wet deposition of mercury compounds. Data concerning TGM and TPM flux rates in the ambient air and data on mercury deposition were used to determine a deposition coefficient. The coefficient was calculated as a share of mercury deposition on the land surface (dry and wet) to the amount of this contaminant transported with loads of air in the form of TGM and TPM in a given measurement station. At both monitoring stations the deposition coefficient did not exceed 0.2 %. The idea of calculating the deposition coefficient based on the analysis of TGM and TPM flux rate is a new solution. The proposed deposition coefficient allows to quantify information on a selected contaminant concentration and its potential impact resulting from deposition. Further studies on the deposition coefficient may contribute to the development of methods for estimating the impact of contaminants contained in the ambient air on other environmental components based on the analyses of the contaminant flux rate.

Go to article

Authors and Affiliations

Bartosz Nowak
Katarzyna Korszun-Kłak
Urszula Zielonka
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.

Go to article

Bibliography

[1] R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, and T. Shirasawa. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95(9):1551–1578, 2007. doi: 10.1016/j.jweia.2007.02.023.
[2] A. Mochida and I.Y.F. Lun. Prediction of wind environment and thermal comfort at pedestrian level in urban area. Journal of Wind Engineering and Industrial Aerodynamics, 96(10):1498–1527, 2008. doi: 10.1016/j.jweia.2008.02.033.
[3] B. Blocken, T. Stathopoulos, J. Carmeliet, and J.L.M. Hensen. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, 4(2):157–184, 2011. doi: 10.1080/19401493.2010.513740.
[4] S.E. Kim and F. Boysan. Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1):145–158, 1999. doi: 10.1016/S0167-6105(99)00013-6.
[5] J. Franke, A. Hellsten, K.H. Schlunzen, and B. Carissimo. Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: A Summary. University of Hamburg, Hamburg, 2007.
[6] J. Franke, A. Hellsten, K.H. Schlunzen, and B. Carissimo. The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. International Journal of Environment and Pollution, 44(1-4):419–427, 2011. doi: 10.1504/IJEP.2011.038443.
[7] S. Murakami, A. Mochida, and Y. Hayashi. Examining the k-ω model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube. Journal of Wind Engineering and Industrial Aerodynamics, 35:87–100, 1990. doi: 10.1016/0167-6105(90)90211-T.
[8] D.A. Köse and E. Dick. Prediction of the pressure distribution on a cubical building with implicit LES. Journal of Wind Engineering and Industrial Aerodynamics, 98(10):628–649, 2010. doi: 10.1016/j.jweia.2010.06.004.
[9] P.J. Richards and S.E. Norris. Appropriate boundary conditions for computational wind engineering models revisited. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):257–266, 2011. doi: 10.1016/j.jweia.2010.12.008.
[10] D.A. Köse, D. Fauconnier, and E. Dick. ILES of flowover low-rise buildings: Influence of inflow conditions on the quality of the mean pressure distribution prediction. Journal of Wind Engineering and Industrial Aerodynamics, 99(10):1056–1068, 2011. doi: 10.1016/j.jweia.2011.07.008.
[11] S. Reiter. Validation process for CFD simulations of wind around buildings. In Proceedings of the European Built Environment CAE Conference, pages 1–18, London, June 2008.
[12] A. Kovar-Panskus, P. Louka, J.F. Sini, E. Savory, M. Czech, A. Abdelqari, P.G. Mestayer, and N. Toy. Influence of geometry on the mean flow within urban street canyons – a comparison of wind tunnel experiments and numerical simulations. Water, Air, and Soil Pollution: Focus, 2(5):365–380, 2002. doi: 10.1023/A:1021308022939.
[13] B. Blocken and J. Persoon. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. Journal of Wind Engineering and Industrial Aerodynamics, 97(5):255–270, 2009. doi: 10.1016/j.jweia.2009.06.007.
[14] M. Sakr Fadl and J. Karadelis. CFD simulations for wind comfort and safety in urban area: A case study of Coventry University central campus. International Journal of Architecture, Engineering and Construction, 2(2):131–143, 2013. doi: 10.7492/IJAEC.2013.013.
[15] B. Blocken, T. Stathopoulos, and J. Carmeliet. CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 41(2):238–252, 2007. doi: 10.1016/j.atmosenv.2006.08.019.
[16] B. Blocken. 50 years of Computational Wind Engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129:69–102, 2014. doi: 10.1016/j.jweia.2014.03.008.
[17] A. Flaga. Wind Engineering. Arkady, Warsaw, Poland, 2008. (in Polish).
[18] K. Klemm. A complex assessment of microclimate conditions found in widely spaced and dense urban structures. KILiW, Polish Academy of Sciences, 2011. (in Polish).
[19] K. Daniels. The Technology of Ecological Building. Birkhäuser, Basel-Boston-Berlin, 1997.
[20] R. Józwiak et al. An analysis of a potential influence on airing and wind conditions of the area surrounding an urban layout planned to be built at a lot situated in Warsaw, Powązkowska street 23/1. Warsaw University of Technology, 2013. internal, not published materials of Institute of Aeronautics and Applied Mechanics, (in Polish).
[21] B. Blocken and J. Carmeliet. Pedestrian wind environment around buildings: Literature review and practical examples. Journal of Thermal Envelope and Building Science, 28(2):107–159, 2004. doi: 10.1177/1097196304044396.
[22] E. Błazik-Borowa. Difficulties arising from the use of k-ω turbulence model for the purpose of determining the airflow around buildings.Lublin University of Technology Publisher, 2008. (in Polish).
[23] S. Murakami. Overview of turbulence models applied in CWE–1997. Journal of Wind Engineering and Industrial Aerodynamics, 74:1–24, 1998. doi: 10.1016/S0167-6105(98)00004-X.
[24] K. Hanjalic and B.E. Launder. A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech, 52(4):609–638, 1972. doi: 10.1017/S002211207200268X.
[25] K. Gumowski, O. Olszewski, M. Pocwierz, and K. Zielonko-Jung. Comparative analysis of numerical and experimental studies of the airflow around the sample of urban development. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(3):729–737, 2015. doi: 10.1515/bpasts-2015-0084.
[26] J.R. Taylor. Introduction to Error Analysis. University Science Books, 2nd edition, 1996.
[27] Y. Tominaga, A. Mochida, R.Yoshie, H. Kataoka, T.Nozu, M.Yoshikawa, and T. Shirasawa. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10):1749–1761, 2008. doi: 10.1016/j.jweia.2008.02.058.
[28] Ansys Fluent Theory Guide, version 14.0. Canonsburg, 2011.
[29] Ansys Fluent User’s Guide, version 14.0. Canonsburg, 2011.
[30] H. Montazeri and B. Blocken. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment, 60:137–149, 2013. doi: 10.1016/j.buildenv.2012.11.012.
Go to article

Authors and Affiliations

Mateusz Jędrzejewski
1
Marta Poćwierz
1
Katarzyna Zielonko-Jung
2

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Architecture, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Size distribution of particulate matter (PM) emitted from coal combustion in residential furnaces as well as emission of Hg, Zn, Pb and Cu were investigated. The metals emission was characterised by partition factors K. The factor expresses the distribution of metal streams between the feed coal and its combustion products emitted to the atmosphere. The values of factors K for Zn, Pb and Cu were 0.59, 0.33 and 0.34 respectively; the relevant variance coefficients were 37, 46 and 44%. Much better variance coefficient of factor K (17%) appeared in the case of mercury. It was found that 52% of Hg in feed coal was emitted to the air in gaseous form. Particulate matter emission from 7 coal combustion sources was investigated and fine particles were found as the main fraction. About 76% of PM were emitted as the size fractions up to 12 μm. The share of size fractions between 12-29 μm was 9%. It means that the impact of PM emission from residential furnaces is not of local scale but the particles containing heavy metals can be transported on long distances in the atmosphere.
Go to article

Authors and Affiliations

Stanisław Hławiczka
Krystyna Kubica
Urszula Zielonka
Krzysztof Wilkosz
Download PDF Download RIS Download Bibtex

Abstract

The problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used. The investigated properties include stability of equilibrium points, a chaos of dynamics and non-minimum phase behaviour around an upper position. The presented results refer to the model of a physical (constructed) DIP system.

Go to article

Authors and Affiliations

Kamil Andrzejewski
Mateusz Czyżniewski
Maciej Zielonka
Rafał Łangowski
ORCID: ORCID
Tomasz Zubowicz
ORCID: ORCID

This page uses 'cookies'. Learn more