Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 86
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present the procedure test for calibration and validation of the numerical model for X22CrMoV12-1 steel multilayer welding. On the real multilayer weld was described how to arrange the whole experiment in order to obtain not only relevant input data but also verification data. Tests on a specially prepared specimen, welded with 8 beads in 4 layers, allows to determine the actual geometry of the single welded beads, registration of welding thermal cycles and the hardness distribution in successively deposited beads together with determining the heat influence of subsequent layers. The results of the real welding tests were compared with the results obtained from the numerical simulations and extended by the calculated stresses and distortions distributions of the tested specimen. A new, improved hardness prediction algorithm for high-alloy martensitic and bainitic steels was also proposed.

Go to article

Authors and Affiliations

T. Kik
ORCID: ORCID
J. Moravec
ORCID: ORCID
I. Novakova
Download PDF Download RIS Download Bibtex

Abstract

To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile.

Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer.

The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.

Go to article

Authors and Affiliations

T. Sadowski
M. Nowicki
P. Golewski
Download PDF Download RIS Download Bibtex

Abstract

The sodium expansion and creep strain of semi-graphitic cathodes are investigated using a modified Rapoport apparatus. To further understanding of the sodium and bath penetration damage processes, the impact of external stress fluence on the carbon cathode microstructure has been defined with XRD analysis, Raman spectroscopy and scanning electron microscope (SEM). Graphite atoms fracture into smaller fragments that are less directional than the pristine platelets, which allows for a possible filling of the cracks that thus develop by the sodium and bath during aluminum electrolysis. The average microcrystalline size (calculated by Raman spectroscopy) is reduced by the deformation. The decreased intensity and widened ‘G’ and ‘D’ peaks in the analysis indicate the poor order of the sheets along the stacking direction while the consistent layered graphite structure is sustained.

Go to article

Authors and Affiliations

Wei Wang
ORCID: ORCID
Weijie Chen
Download PDF Download RIS Download Bibtex

Abstract

Al2O3-Al2TiO5-TiO2 composites can be obtained by the infiltration of molecular titanium precursors into presintered α-Al2O3 (corundum) cylinders. Two titanium tetraalkoxides, and two dialkoxy titanium bis(acetylacetonates) serve as precursors for TiO2 (rutile) and Al2TiO5 (tialite). The precursors were infiltrated as ethanolic solutions. After sintering at 1550, 1600, and 1650°C, the prepared ceramics’ properties were investigated by SEM, in-situ HT-XRD, and conventional XRD. Titanium tetraisopropoxide leads to the highest content of Al2TiO5 in the composite. The more reactive the precursor, considering the Al2O3/precursor interface, the lower and more anisotropic the grain growth, the more homogeneous is the TiO2 contribution and the higher is the content of Al2TiO5. Raising the sintering temperature causes an increase of the crystalline Al2TiO5 con­tent as well as of the grain growth. Moreover, the reactivity of the precursor molecule influences the Ti/(Al + Ti) ratio in the obtained tialite phase.

Go to article

Authors and Affiliations

B. Dittert
M. Wiessner
P. Angerer
J.M. Lackner
H. Leichtfried
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of manganese on the crystallization process, microstructure and selected properties: cast iron hardness as well as ferrite and pearlite microhardness. The compacted graphite was obtained by Inmold technology. The lack of significant effect on the temperature of the eutectic transformation was demonstrated. On the other hand, a significant reduction in the eutectoid transformation temperature with increasing manganese concentration has been shown. The effect of manganese on microstructure of cast iron with compacted graphite considering casting wall thickness was investigated and described. The nomograms describing the microstructure of compacted graphite iron versus manganese concentration were developed. The effect of manganese on the hardness of cast iron and microhardness of ferrite and pearlite were given.

Go to article

Authors and Affiliations

Grzegorz Gumienny
ORCID: ORCID
B. Kurowska
ORCID: ORCID
P. Just
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses a theoretical and an experimental analyses of steel wire drawing in conical drawing dies with a varying length of the die sizing portion. The theoretical analysis was performed in the Drawing 2D, where the wire temperature and drawing stress were determined. The theoretical study was verified by the measurement of drawing force under laboratory conditions and by industrial multi-stage drawing tests carried out under commercial conditions. A relationship has been shown to exist between die sizing portion length and wire temperature and drawing stress.

Go to article

Authors and Affiliations

M. Suliga
M. Jabłońska
Download PDF Download RIS Download Bibtex

Abstract

In the article, the characterization of the microstructure, phase composition and distribution of elements in the Eu2O3-ZrO2 sintered materials obtained by four different ways of powders’ homogenization (mixing) process and different temperature of sintering process is shown. The feedstock powders with an average mole ratio of ZrO2 to Eu2O3 equal 74% to 26% were used as an initial material. The principal aim of the investigation was characterization of differences in the microstructure of the same type of ceramics, however, prepared via different mixing and manufacturing processes. The range of the investigation covered a characterization of these materials via phase identification of all samples by XRD (X-ray diffraction) and characterization of internal morphology of the specimens with detailed analysis of elements distributions by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometry). The aim of the following investigation is to characterize the possibilities of the solid state synthesis of the europium zirconate based materials, dedicated for TBC applications.

Go to article

Authors and Affiliations

M. Mikuśkiewicz
G. Moskal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of laboratory testing of the phenomenon of cracking in the process of cross rolling. A new method of determining the critical value of the damage function was developed, in which a disc-shaped sample is subjected to rotational compression in a channel. In this method the Mannesmann effect was used. The laboratory tests were conducted for C45, 50HS and R260 grade steel in the temperature range 950°C-1150°C. In order to research various methods of simulating the phenomenon of cracking in the process of cross rolling, physical modelling was also employed. The model material was commercial plasticine, cooled to the temperature 0°C-20°C. Comparing the test results for both the real and model material allowed one to determine the range of the forming temperature for the model material, in which the cracking process is similar to the case of the real material.

Go to article

Authors and Affiliations

Ł. Wójcik
Z. Pater
Download PDF Download RIS Download Bibtex

Abstract

The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of multi-layered Ti/Al/Mg specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Cuboidal specimens were cut off from the plates obtained in the explosive welding method. Based on the obtained investigation results it has been found non uniform deformation of the particular layer as a result their different value of flow stress.

Go to article

Authors and Affiliations

S. Mróz
A. Stefanik
P. Szota
M. Kwapisz
M. Wachowski
ORCID: ORCID
L. Śnieżek
ORCID: ORCID
A. Gałka
Z. Szulc
Download PDF Download RIS Download Bibtex

Abstract

This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.

Go to article

Authors and Affiliations

K. Dybowski
G. Romaniak
P. Kula
A. Jeziorna
P. Kowalczyk
R. Atraszkiewicz
Ł. Kołodziejczyk
D. Nowak
ORCID: ORCID
P. Zawadzki
M. Kucińska
Download PDF Download RIS Download Bibtex

Abstract

An attempt was made to determine phase composition of commercial aluminium alloys using X-ray diffraction. Samples for phase composition analysis were selected from the group of aluminium alloys covered by the EN 573-3:2013 standard [1]. Representative samples were taken from eight groups of alloys with different chemical composition (at least one sample from each group). The diffraction intensity was measured with a standard X-ray diffractometer in Bragg-Brentano geometry in a way that allowed identification of the weakest diffraction peaks. As a results of the performed research it has been shown that X-ray phase analysis can be used to identify the matrix of aluminium alloys, Si and crystalline intermetallic phases such as Mg2Si, Al93.38Cu6.02Fe24Si16.27, Al4.01MnSi0.74, MgZn2, Al17(Fe3.2Mn0.8)Si2, Al65Cu20Fe15, and Cu3Mn2Al. The detectability limit of the above-mentioned phases is better than 0.5%. The research has also shown that X-ray phase analysis is applicable in the investigation of phase transformations taking place in aluminium alloys.

Go to article

Authors and Affiliations

K. Pachut
J. Żelechowski
S. Boczkal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to test currently available on the market products for sealing anodic oxide coatings as well as to test the use of other alternative substances improving the sealing process. The ability to seal in 10 different solutions and the quality of the seal has been tested. The influence of the applied preparations on corrosion resistance and resistance to strongly alkaline environment was also investigated.

Based on the results obtained, satisfactory results were archived for the sample sealed in a IMN-OML (Institute of Non-Ferrous Metals in Gliwice, Light Metals Division) solution sealant and in solution of nickel acetate in a medium-temperature process. Sealing by means of nickel acetate solutions is economically justified, and its use allows the process temperature to be lowered. When it comes to resistance to alkalis, samples sealed in IMN-OML sealant are the best. Commercial solutions have also achieved positive results in all tests.

Go to article

Authors and Affiliations

A. Kozik
M. Nowak
K. Gędłek
D. Leśniak
J. Zasadziński
H. Jurczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the electrodeposition of nickel composite coatings reinforced with the ceramic SiC particles. A Watts type galvanic bath modified with various organic additives was used. These additives were: 2-sulfobenzoic acid imide (LSA), dioctyl sulfosuccinate sodium salt (DSS), sodium dodecyl sulfate (SDS), tris (hydroxymethyl) aminomethane (THAM) and hexamethyldisilizane (HMDS). The nickel composite coating was electrodeposited on a 2xxx aluminum alloy series substrate (EN-AW 2017) with zinc interlayer. Studies concerned the effect of the applied organic additives on properties of composite coatings such as: microstructure, microhardness, adhesion to the substrate, corrosion resistance and roughness. The structure of the coatings was assessed by scanning electron microscopy and light microscopy. Based on the studies of zeta potential it was found that the bath modification had a significant impact on the amount of the ceramic phase embedded in metal matrix. The tests conducted in a model 0.01 M KCl solution were not fully representative of the true behavior of particles in a Watts bath.

Go to article

Authors and Affiliations

M. Nowak
J. Mizera
A. Kłyszewski
A. Dobkowska
S. Boczkal
ORCID: ORCID
A. Kozik
P. Koprowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Advanced vision method of analysis of the Erichsen cupping test based on laser speckle is presented in this work. This method proved to be useful for expanding the range of information on material formability for two commonly used grades of steel sheets: DC04 and DC01. The authors present a complex methodology and experimental procedure that allows not only to determine the standard Erichsen index but also to follow the material deformation stages immediately preceding the occurrence of the crack. Accurate determination of these characteristics in the sheet metal forming would be an important application, especially for automotive industry. However, the sheet metal forming is a very complex manufacturing process and its success depends on many factors. Therefore, attention is focused in this study on better understanding of the Erichsen index in combination with the material deformation history.

Go to article

Authors and Affiliations

C. Jasiński
A. Kocańda
Ł. Morawiński
S. Świłło
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Al2Cu phase has been obtained by melting pure metals in the electric arc furnace. It has been found that the intermetallic phase undergoes selective corrosion in the H3PO4 aqueous solutions. Aluminium is dissolved, the surface becomes porous and enriched with copper. The corrosion rate equals to 371 ± 17 g·m–2·day–1 (aerated solution) and 284 ± 9 g·m–2·day–1 (deaerated solution). The surface of Al2Cu phase after selective corrosion was characterised by using electrochemical impedance spectroscopy. It was found that the surface area of the specimens increases with temperature due to higher corrosion rate and is between 2137 and 3896 cm2.

Go to article

Authors and Affiliations

P. Kwolek
A. Gradzik
D. Szeliga
B. Kościelniak
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic optimizations of the ternary Fe-B-Ti system and its binary sub-system, B-Ti are presented. The thermodynamic descriptions of the other binaries, Fe-Ti and Fe-B, are taken from the earlier studies slightly modifying the Fe-Ti system assessment. The adjustable parameters of the Fe-B-Ti and B-Ti systems are optimized in this study using the experimental thermodynamic and the phase equilibrium data from the literature. The solution phases of the system are described using the substitutional solution model and the compounds (including borides) are treated as stoichiometric phases. The results show a good correlation between the calculated and measured thermodynamic and phase equilibrium data.

Go to article

Authors and Affiliations

J. Miettinen
V-V. Visuri
T. Fabritius
N. Milcheva
G. Vassilev
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic descriptions of the ternary Fe-B-Si system and its binary sub-system, B-Si, are developed in the context of a new Fe-B-X (X = Cr, Ni, Mn, V, Si, Ti, C) database. The thermodynamic parameters of the other binary sub-systems, Fe-Si and Fe-B, are taken from earlier assessments. Experimental thermodynamic and phase equilibrium data available in the literature has been used for the optimization of the thermodynamic parameters of the Fe-B-Si and B-Si systems. The solution phases are described using substitutional solution model and the compounds (silicides and borides) are treated as stoichiometric phases. The calculated and experimental thermodynamic and phase equilibrium data were found to be in good agreement.

Go to article

Authors and Affiliations

J. Miettinen
V-V. Visuri
T. Fabritius
N. Milcheva
G. Vassilev
Download PDF Download RIS Download Bibtex

Abstract

Basing on experimental data, the possibility of consolidating side products of turning, milling and drilling of aluminum alloys into the form and properties of solids metals using low-temperature KoBo extrusion method has been assessed. Research regarding mechanical and structural properties of the final products revealed their total consolidation and proved their compatibility with requirements for products made of bulk billets. Importantly, the chips consolidation process does not require high or even raised temperature, which significantly reduces the unfavorable phenomenon of chips oxidation and its negative influence on the structure and mechanical properties of products. A very good effect of chips compaction has been proved by KoBo method, which has been confirmed by relatively slightly different mechanical properties of the material after recycling compared with the bulk one. Among currently applied techniques of consolidation of dispersed fractions in a solid state (leaving the melting stage out), the KoBo method seems an innovative way of utilizing metallic chips, as it enables a cold deformation process.

The paper presents investigations using 2024 and 7075 aluminum alloys chips from manufacturing process, formed into briquettes and deformed under conditions of KoBo extrusion process, which enables to obtain long product by cold forming. The final product characterized by good microstructures, mechanical features and low cost of production.

Go to article

Authors and Affiliations

B. Pawłowska
R.E. Śliwa
ORCID: ORCID
M. Zwolak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this work, a mid infrared thermography was used to study thermal behavior of solid oxide fuel cell (SOFC) with a circular shape and a diameter of 90 mm. The emissivity of the anodic surface of the fuel cell was determined to be from 0.95 to 0.46 in the temperature range 550-1200 K and the profile and temperature distribution of the anodic surface of the unloaded cell was given. The surface temperature of the cell was determined during operation and the polarity changes from open circuit voltage (OCV) to 0.0 V. It was found that the cell self-heating effect decreases with increasing temperature of the cell.

Go to article

Authors and Affiliations

M. Jasiński
K. Ziewiec
M. Wojciechowska
Download PDF Download RIS Download Bibtex

Abstract

Multilayered composites based on light metals are promising materials in many applications. In the present work the 15-layered clad, composed of alternately stacked of Ti(Gr.1) and AA1050-H24 alloy sheets of 1 mm thick has been investigated with respect to determination of the kinetic of the Al3Ti phase growth. The defect-free multilayered composite was successfully formed by explosive welding technology. Then EXW samples were modified via annealing at the temperature of 600oC in closed die under pressure of 44 MPa for various times ranged between 1 and 10 h. Transmission and Scanning Electron Microscopy examinations were conducted in order to study the kinetic of the elements migration across the interfaces between the layers of the Al/Ti composite. The macro-scale observations of samples after EXW revealed that wavy interfaces were always formed in layers near the explosive charge. The increase of the distance from the top surface leads to flattening of the interface with very thin reaction layer between Al and Ti sheets. During annealing the kinetic of the Al3Ti phase growth is similar near all interfaces and coincides with data from other works. It was found that despite the loading after 10 h of annealing still only small part of Al-sheets undergoes dissolution and the width of the reaction layer does not exceed 5-8 µm.

Go to article

Authors and Affiliations

P. Petrzak
ORCID: ORCID
I. Mania
ORCID: ORCID
H. Paul
ORCID: ORCID
Ł. Maj
ORCID: ORCID
A. Gałka
Download PDF Download RIS Download Bibtex

Abstract

In this research work, Ti6Al4V alloy material was subjected to electric discharge machining (EDM) and its fatigue life was investigated at low cycle fatigue mode. In order to evaluate the influence of recast layer generated during the machining process on the fatigue life, samples prepared using end milling process were also subjected to similar tests and a comparative analysis is presented. Data were observed in the fully reversed fatigue mode at room temperature using samples fabricated as per ASTM standard E606. The specimen were machined on a spark electric discharge die sink machine which were subjected to fatigue, and the recorded fatigue lives were compared with the fatigue life of end milled specimen. The machined surfaces were examined through optical and scanning electron microscopes, and the roughness was measured with a standard profilometer. It was observed that when the discharge current is augmented, the recast layer formed was in the range of 20 to 70 µm thick. From the results, it is being concluded that fatigue life of the samples fabricated by EDM is less for various load conditions when compared with that of the end milled sample. The milled sample at 160 MPa load exhibited 2.71×105 cycles, which is 64% more when compared to EDM sample.

Go to article

Authors and Affiliations

A. Eakambaram
M. Anthony Xavior
Download PDF Download RIS Download Bibtex

Abstract

Microstructure and texture of the CuCr0.6 alloy processed by rolling with cyclic movement of rolls (RCMR) at room temperature were investigated. The RCMR processing was applied for the samples in different initial conditions in the solid solution followed by quenching into iced water at 1000oC for 3 h and in aging treatment conditions performed at 500oC for 2 h and at 700oC for 24 h. Application of the solution and aging processes prior to RCMR deformation results in the partial dissolution of Cr particles into the Cu matrix and precipitation of the second phase particles. RCMR processing with value of the total effective strain (εft) of 5 was introduced to the material. It was found that the RCMR method is effective in texture weakening. The obtained results revealed that there is a large similarity in texture orientations after RCMR processing independently of heat treatment conditions. Cyclic character of deformation leads to an incomplete transition of LAB to HAB.

Go to article

Authors and Affiliations

A. Urbańczyk-Gucwa
A. Brzezińska
B. Adamczyk-Cieślak
ORCID: ORCID
K. Rodak
Download PDF Download RIS Download Bibtex

Abstract

Ladle plays an important role in the metallurgical industry whose maintenance directly affects the production efficiency of enterprises. In view of the problems such as low maintenance efficiency and untimely maintenance in the current ladle passive maintenance scheme, the life prediction mechanism for ladle composite structures is established which bases on the stress analysis of steel shell and ladle lining in the production process, combining conventional fatigue analysis and extended fracture theory. The mechanism is accurate and effective according to the simulation results. Through which, the useful life of steel shell can be accurately predicted by detecting the crack length of it. Due to the large number of factors affecting the life of the lining of the ladle, it is difficult to accurately predict the life of the ladle lining, so a forecasting mean based on the thermal shock method is proposed to predict the service life of the ladle lining in this paper. The life prediction mechanism can provide data support and theoretical guidance for the active maintenance of the ladle, which is the prerequisite for scientifically formulating ladle initiative maintenance program.

Go to article

Authors and Affiliations

Gongfa Li
Du Jiang
Ying Sun
Guozhang Jiang
Bo Tao

This page uses 'cookies'. Learn more