Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Many industrial rotating machines driven by asynchronous motors are often affected by detrimental torsional vibrations. In this paper, a method of attenuation of torsional vibrations in such objects is proposed. Here, an asynchronous motor under proper control can simultaneously operate as a source of drive and actuator. Namely, by means of the proper control of motor operation, it is possible to suppress torsional vibrations in the object under study. Using this approach, both transient and steady-state torsional vibrations of the rotating machine drive system can be effectively attenuated, and its precise operational motions can be assured. The theoretical investigations are conducted by means of a structural mechanical model of the drive system and an advanced circuit model of the asynchronous motor controlled using two methods: the direct torque control – space vector modulation (DTC-SVM) and the rotational velocity-controlled torque (RVCT) based on the momentary rotational velocity of the driven machine working tool. From the obtained results it follows that by means of the RVCT technique steady-state torsional vibrations induced harmonically and transient torsional vibrations excited by switching various types of control on and off can be suppressed as effectively as using the advanced vector method DTC-SVM.
Go to article

Authors and Affiliations

Paweł Hańczur
1 2
Tomasz Szolc
1
ORCID: ORCID
Robert Konowrocki
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Schneider Electric Polska Sp. z o.o, ul. Konstruktorska 12, 02-673 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mining tremors may have an impact on the safety risk of steel pipelines through their effects. It is therefore important to quantify the impact of a high-energy mining tremor in terms of strength. In addition, a comparison of the results obtained with the effect of a seismic tremor can illustrate the scale of such a hazard. Recently, this has been a very frequently raised issue in the area of surface protection against negative mining impacts and the protection of post-mining areas. Ensuring safe use is particularly important for gas transmission elements. This paper presents the results of a comparative analysis of the impact of mining tremors and seismic impacts on a specimen steel pipeline segment. The analyzed pipeline is located in the eastern part of Poland in the area of paraseismic impacts of the LGCD (Legnica-Glogow Copper District) mine. For this purpose, an analytical approach was used to assess the impact of seismic wave propagation on underground linear infrastructure facilities. Accelerogram records for the 02-06-2023 seismic tremor from Turkey and the mining tremor for 11-25-2020 were used. In the case of the design of underground pipelines, the cross-section of the element for which measures describing wall stress and the ovalization of the cross-section are determined is usually considered. In the situation of the influence of seismic wave propagation or so-called permanent ground deformation, the response of the pipeline in the longitudinal direction is analyzed. As a final result, longitudinal strains transferred to the pipeline as a consequence of the propagating seismic wave and mining tremor were determined. The absolute difference between the deformations in the ground and along the length of the pipeline was determined. This type of analysis has not been carried out before and provides new insights into the topic of paraseismic impacts on the scale of their interaction with natural earthquakes. Mining tremor data was obtained from the mine’s seismological department. The seismic tremor data, on the other hand, was downloaded via the publicly available ESM (Engineering Strong- Motion Database).
Go to article

Authors and Affiliations

Janusz Rusek
1
ORCID: ORCID
Leszek Słowik
2
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID

  1. AGH University of Krakow al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. ITB Building Research Institute ul. Filtrowa 1, 00-611 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Light pollution has a detrimental effect on astronomy. Artificial light emitted from outdoor lighting increases the brightness of the night sky, making it difficult to observe astronomical objects. The spectral power distribution of artificial light sources is one of the key factors determining how much the night sky is deteriorated by light pollution. The ongoing replacement of discharge lamps with LED sources may have a major impact on astronomy because LED spectra usually cover the entire visible radiation range. This paper provides an analysis of the impact of LED sources with correlated color temperature in the range from 1000 K to approximately 10 000 K on visual and instrumental astronomical observations. For each analyzed artificial source, the Starlight Contamination Degree (SCD) index, i.e. a quantity that allows for quick evaluation of the impact of the sources on the night sky, is calculated. The reflection of artificial light from different ground surfaces and its scattering in the atmosphere was included in the calculation of the SCD index. LED lamps with very low values of correlated color temperature (CCT) and color rendering index (CRI) were found to possibly have a similar or even smaller impact on astronomical observations than sodium discharge lamps. Moreover, professional astronomical observations are more affected by LED lamps than visual observations, even for lamps with the lowest CCT and CRI. Thus, additional measures (e.g. reducing lumen output) should be applied to protect observational conditions. The results of the study help to assess which LED lamps can be used, and which should be avoided in the protection zones around astronomical observing sites.
Go to article

Authors and Affiliations

Przemysław Tabaka
1
ORCID: ORCID
Sylwester Kołomański
2

  1. Institute of Electrical Power Engineering, Lodz University of Technology, Lodz, Poland
  2. Astronomical Institute, University of Wrocław, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an off-line application that determines the maximum accuracy of the reference points for the given dynamics parameters of a CNC machine. These parameters are maximum speed, acceleration, and JERK. The JERK parameter determines the rate of change of acceleration. These parameters are defined for each working axis of the machine. The main achievement of the algorithm proposed in the article is the determination of the smallest error specified for each reference point resulting from the implemented G-code for the considered dynamic parameters of the CNC machine. The solutions to this problem in industry consider the improvement in the accuracy of hitting the reference points, but they do not provide information on whether the obtained solution is optimal for such parameters of the machine dynamics. The algorithm makes the accuracy dependent on the adopted dynamic parameters of the machine and the parameters of the PLC controller used in the CNC machine.
Go to article

Authors and Affiliations

Bogdan Kwiatkowski
1
ORCID: ORCID
Tadeusz Kwater
2
ORCID: ORCID
Damian Mazur
1
ORCID: ORCID
Jacek Bartman
3
ORCID: ORCID

  1. Department of Electrical and Computer Engineering Fundamentals, Rzeszow University of Technology, ul. W. Pola 2, 35-959 Rzeszow, Poland
  2. Institute of Technical Engineering, State University of Technology and Economics in Jaroslaw, ul. Czarnieckiego 16, 37-500 Jaroslaw, Poland
  3. University of Rzeszow, ul. Rejtana 16C, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The investigation of a decentralized radio network dedicated to unmanned aerial systems (UASs) was presented in the paper. Two frequencies (315 MHz; 434 MHz) and five different configurations of Gaussian frequency-shift keying (GFSK) were taken into account. Three different algorithms for decentralized networks were investigated and their influence on the network capacity was measured. The research was done both for static and dynamically changed unmanned aerial vehicle (UAV) positions. In order to quantify the research three different parameters were determined: RSSI, nP (number of data packets in one second), and f (frequency of data update).
Go to article

Authors and Affiliations

Patryk Szywalski
1
Andrzej Waindok
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Automatic Control and Informatics, Department of Electrical Engineering and Mechatronics,Opole University of Technology, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper introduces a novel approach to building network cluster structures, based on the modified LEACH algorithm. The proposed solution takes into account the multitasking of the network infrastructure, resulting from various functions performed by individual nodes. Therefore, instead of a single head, dedicated to a given cluster, a set of heads is selected, the number of which corresponds to the number of performed functions. Outcomes of simulations, comparing the classical and the multifunctional approach, are presented. The obtained results confirm that both algorithms deliver similar levels of energy consumption, as well as efficiency in terms of the number of individual nodes discharged.
Go to article

Authors and Affiliations

A. Paszkiewicz
1
ORCID: ORCID
C. Ćwikła
2
M. Bolanowski
1
ORCID: ORCID
M. Ganzha
3
ORCID: ORCID
M. Paprzycki
3
ORCID: ORCID
M. Hodoň
4
ORCID: ORCID

  1. Department of Complex Systems, Rzeszow University of Technology, Al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
  2. Rzeszow University of Technology, Al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
  3. Systems Research Institute Polish Academy of Sciences, Newelska 6, Warszawa 01-447, Poland
  4. Department of Technical Cybernetics, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

This page uses 'cookies'. Learn more