Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the experimental results on the determination of melt parameters such as the energy of the boundary, contact angle, density and kinematic viscosity of low and medium alloy steels at different temperatures, as well as the dispersion of their dendritic structure in solidified castings. The analysis of the data obtained allowed revealing using mathematical models the influence of the chemical composition and temperature of melts on their properties and the dendritic structure of castings. It was established the variation of the melt parameters depending on the particular chemical elements of steels as C, Si, Mn, O, P, V, Cr. The established analytical dependences shown that increasing density and viscosity contributes to the dispersion of the dendritic structure and viscosity is of the major effect. The derived quantitative patterns allows to evaluate structure formation of cast structural low and medium alloy steels.
Go to article

Bibliography

[1] Volmer, M. (1939). Kinetik der Phasenbildung. Dresden, Leipzig, Steinkopf.
[2] Frank, F. (1949). Model grow crystallization. Discusion of the Faraday Society. 5, 48-54.
[3] Frenkel, Ya.I. (1975). Kinetic theory of liquid. M.: Publishing House of the Academy of Sciences of the USSR.
[4] Wilson, D.P. (1965) Structure of liquid metals and alloys. Metallurgical Reviews, 10(1), 381-590.
[5] Cao, Y.F., Chen, Y., Ma, X.P., Fu, P.X., Kang, X.H., Liu, H.W., Li, D.Z. (2016). The effect of alloy elements on the density variation of steel melt at the interdendritic region during solidification. In 4th International Conference on Advances in Solidification Processes (ICASP-4). IOP Conf. Series: Materials Science and Engineering, 8-11 July 2014 (pp. 1-7).
[6] Arsentiev, P.P., Koledov, L.A. (1976). Metallicheskie rasplavy i ih svojstva [Metal melts and their properties]. Moskva: Metallurgiya [In Russian].
[7] Ershov, G.S., Bychkov, Yu.B. (1982). Fiziko-himicheskie osnovy racionalnogo legirovaniya stalej i splavov [Physical and chemical bases of rational alloying of steels and alloys]. Moskva: Metallurgiya [In Russian].
[8] Ryzhonkov, D.I., Arsentiev, V.V., Yakovlev, V.V. (1989). Teoriya metallurgicheskih processov [Theory of metallurgical processes]. Moskva: Metallurgiya [In Russian].
[9] Kupriyanov, A.A. & Filippov, S.I. (1968). Density and structural changes of iron and alloys of iron with carbon. Izv.vuz. Ferrous metallurgy. 9, 10-15.
[10] Ershov, G.S., Bychkov, Yu.B. (1983). Svojstva metallurgicheskih rasplavov i ih vzaimodejstvie v staleplavilnyh processah [Properties of metallurgical melts and their interaction in steelmaking processes]. Moskva: Metallurgiya [In Russian].
[11] Goldstein, Ya.E., Mizin, V.G. (1986). Modificirovanie i mikrolegirovanie chuguna i stali [Modification and microalloying of cast iron and steel]. Moskva: Metallurgiya [In Russian].
[12] Grigoryan, V.A., Belyanchikov, L. N., Stomakhin, A.Ya. (1987). Teoreticheskie osnovy elektrostaleplavilnyh processov [Theoretical fundamentals of electric steelmaking processes]. Moskva: Metallurgiya [In Russian].
[13] Baum B.A. (1979). Metallicheskie zhidkosti - problemy i gipotezy [Metallic liquids - problems and hypotheses]. Moskva: Nauka [In Russian].
[14] Feng, G., Jiao, K., Zhang, J. & Gao, S. (2021). High-temperature viscosity of iron‑carbon melts based on liquid structure: The effect of carbon content and temperature. Journal of Molecular Liquids. 330, 115603, 1-10. https://doi.org/10.1016/j.molliq.2021.115603.
[15] Turnbull, D. & Fisher, J.C. (1949). Rate of Nucleation in Condensed Systems. Journal of Chemical Physics. 17, 71.
[16] Popel, S.I. (1971). Teoriya metallurgicheskih processov [Theory of metallurgical processes]. Moskva: VINITI [In Russian].
[17] Efimov, V.A., Eldarkhanov A.S. (2004). Tehnologii sovremennoj metallurgii [Technologies of modern metallurgy]. Moskva: Novye tehnologii [In Russian].
[18] Volmer, M.I., Mаnder, M. (1931). Journal of Chemical Physics. A154, 97.
[19] Flemings, M. (1974). Solidification processing. New York: Mc Graw – Hill book company.
[20] Hilling, W.B., Turnbull, D. (1956) Theory of Crystal Growth in Undercooled Pure Liquids. Journal of Chemical Physics. 24(4), 914.
[21] Turnbull, D. (1949). Thermodynamics in Metallurgy, ASM, Metals Park, Ohio.
[22] Baum, B.A. (1988). About of the relationship of liquid and solid metallic states. Rasplavy. 2(2), 18-32.
[23] Arsentiev, P.P., Yakovlev, V.V., Krashennikov, M.G. (1988). Fiziko-himicheskie metody issledovaniya metallurgicheskih processov [Physico-chemical methods for studying metallurgical processes]. Moskva: Metallurgiya [In Russian].
[24] Shvedkov, E.L. (1975). Elementarnaya matematicheskaya statistika v eksperimentalnyh zadachah materialovedeniya [Elementary mathematical statistics in experimental problems of materials science]. Kiev: Naukova dumka [In Russian].
[25] ImageJ. Image Processing and Analysis in Java. Retrieved September 11, 2023 from: https://imagej.nih.gov/ij/.
[26] Vitol, E.N. & Orlova K.B. (1984). About the energy of the boundary of liquid metals. Izv. USSR Academy of Sciences Metals. 4, 37-42.
[27] Svidunovich, N.A., Glybin, V.P., Svirko, L.K. (1989). Vzaimodejstvie komponentov v splavah [Interaction of components in alloys]. Moskva: Metallurgiya [In Russian].
[28] Chalmers, B. (1968). Teoriya zatverdevaniya [Theory of Solidification]. Moskva: Metallurgiya [In Russian].  


Go to article

Authors and Affiliations

Y. Aftandiliants
1
ORCID: ORCID
S. Gnyloskurenko
1 2
ORCID: ORCID
H. Meniailo
3
ORCID: ORCID
V. Khrychikov
3
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Physical and Technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, Ukraine
  3. Ukrainian State University of Science and Technologies, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The work presents the effect of the addition of graphite from recycled graphite electrodes on the mechanical properties of metal matrix composites (MMC) based on the AlMg10 alloy. A composite based on the AlMg10 alloy reinforced with natural graphite particles was also tested. Further, tests of the mechanical properties of the AlMg10 alloy were performed for comparative purposes. Composites with a particle content of 5, 10 and 15 percent by volume were produced by adding introduction of particles into the liquid matrix while mechanically mixing molten alloy. The composite suspensions were gravitationally cast into metal molds. Samples for the Rm, R0.2, A and E tests were made from the prepared castings. Photos of the microstructures of the materials were also taken. The research shows that the addition of graphite to the matrix alloy causes minor changes in tensile strength (Rm) and yield strength (R02), regardless of the type of graphite used. The results of the relative elongation tests showed that the introduction of graphite particles into the matrix alloy had an adverse effect on the elongation values in the case of each of the tested composites. The introduction of graphite particles into the AlMg10 alloy significantly increased the Young’s modulus value, both in the case of composites with flake graphite (natural) and graphite from ground graphite electrodes.
Go to article

Bibliography

[1] Journal of Laws (2023). item 1587, as amended.
[2] Świądkowska, W. (2017). Jagiellonian University Repository Recycling. Cracow: Jagiellonian University Publishers.
[3] Fleszar, J. (2014). Legal, economic and organisational aspects of vehicle recycling. Buses: technology, operation, transportation systems. 15(6), 113-117.
[4] Carbograf. Graphite electrodes for furnaces arched. Retrieved June 28, 2023 from https://www.carbograf.pl/graf-elektrody-do-piecow-lukowych
[5] Łędzki, A., Michaliszyn, A., Klimczyk A. (2012). Steel melting in electric arc furnaces. Extraction metallurgy of iron, Cracow, AGH.
[6] Custom Market Insight. Global Graphite Electrode Market 2023-2032. Retrieved June 28, 2023 from https://www.custommarketinsights.com/report/graphite-electrode-market/
[7] Industry Arc. (2023) Graphite Electrodes Market Overview. Retrieved June 28, 2023 from https://www.industryarc.com/Research/Graphite-Electrodes-Market-Research-503019
[8] Festinger, N., Morawska, K., Ciesielski, W. (2019). Electrochemical properties of electrodes made of highly oriented pyrolytic graphite. In Quadrant for chemistry: a monograph: Spring Convention of the Student Section of the Polish Chemical Society, 10-14.04.2019 (pp. 45-52). Ustron.
[9] Janicka, E. (2014). Comprehensive impedance characterization of fuel cell performance. Doctoral dissertation. Gdansk University of Technology.
[10] Kuśmierek, K., Świątkowski, A., Skrzypczyńska, K. (2015). The role of the specific surface area of carbon materials used in modified graphite paste electrodes. Applied electrochemistry. Cracow: Scientific Publishing House AKAPIT.
[11] Chemistry and Business. (2023). Synthetic graphite is becoming more and more popular. Retrieved June 27, 2023 from https://www.chemiaibiznes.com.pl/artykuly/grafit-syntetyczny-coraz-chetniej-stosowany
[12] Green Energy . Refractories and Isolation. (2020). Overview of Metallurgical Graphite Electrodes and Analysis of Carbon Products Industry. Retrieved June 28, 2023 from http://pl.greenergyrefrataatarios.com/info/overview-of-metallurgical-graphite-electrodes-49845995.html
[13] BAT Reference Document for Best Available Techniques in the Production of Non-Ferrous Metals (2001). Lukasiewicz Research Network - Institute of Non-Ferrous Metals Legnica Branch, interpreter: Płonka A., Bzowski W., Przebindowski Z.
[14] Myalski, J. & Sleziona, J. (2005). Metal composites reinforced with glassy carbon particles. Foundry Review. 1(55), 24-27.
[15] Naplocha, K., Samsonowicz Z. & Janus, A. (2005). Aluminum alloy matrix composites reinforced with Al2O3 fibers and graphite. Composites. 5(2), 95-98.
[16] Łągiewka, M. & Komlasiak, C. (2021). Solidification of the Al alloy composite reinforced with graphite. Metalurgija. 60(3-4), 399-402.
[17] Tjong, S.C., Wang, H.Z. & Wu, S.Q. (1996). Wear behavior of aluminum-based matrix composites reinforced with a preform of aluminosiliate. Metallurgical and Materials Transactions. 27(8), 2385-2389. https://doi.org/10.1007/BF02651894.
[18] Łągiewka, M. & Konopka, Z. (2014). Effect of graphite addition on abrasive wear of AlMg10 alloy matrix composites reinforced with SiC particles. Archives of Foundry Engineering. 14(3), 51-54. ISSN (1897-3310).
[19] Naplocha, K. & Janus, A. (2006). Abrasion resistance of aluminum alloy matrix composites reinforced with Al2O3 fibers and graphite. Composites. 6(1), 3-8.
[20] Komlasiak, C. & Łągiewka, M. (2023). Foundry properties of composites on AlMg10 alloy matrix with SiC and Cgr particles. Metalurgija. 62(1), 149-151.
Go to article

Authors and Affiliations

Małgorzata Łągiewka
1
ORCID: ORCID

  1. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article aims to characterize Hadfield steel by analyzing its chemical composition, mechanical properties, and microstructure. The study focused on the twinning-induced work hardening of the alloy, which led to an increase in its hardness. The experimental data show that the material hardness at the surface improved considerably after solution heat treatment and work hardening, reaching more than 750 HV. By contrast, the hardness of the material core in the supersaturated condition was about 225 HV. The chemical and phase compositions of the material at the surface were compared with those of the core. The microstructural analysis of the steel revealed characteristic decarburization of the surface layer after solution heat treatment. The article also describes the effects of heat treatment on the properties and microstructure of Hadfield steel. The volumetric (qualitative) analysis of the computed tomography (CT) data of Hadfield steel subjected to heavy dynamic loading helped detect internal flaws, assess the material quality, and potentially prevent the structural failure or damage of the element tested.
Go to article

Bibliography

[1] Kalandyk, B., Tęcza, G., Zapała, R., Sobula, S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
[2] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.
[3] Guzman Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/ 0370-44672019730023
[4] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI:10.1016/j.msea.2018.05.059.
[5] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu, B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering. 679, 95-103. DOI:10.1016/j.msea.2016.09.106.
[6] Bolanowski, K. (2008). Wear of working elements made of Hadfield cast steel under industrial conditions. Problemy Eksploatacji. 2, 25-32.
[7] Tęcza, G., Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14(3), 67-70.
[8] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[9] Pribulová, A., Babic, J. & Baricová, D. (2011). Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[10] Przybyłowicz, K. (2008). Iron alloys engineering. Kielce: Wyd. Politechniki Świętokrzyskiej w Kielcach (in Polish).
[11] Stradomski, Z. (2001). On the explosive hardening of cast Hadfield steel. Proceedings of a Conference on Advanced Steel Casting Technologies. Kraków. 112-122. (in Polish).
[12] Cullity, B.D. (1964). Basics of X-ray diffraction. Warszawa: PWN. (in Polish).
[13] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield cast steel. Problemy Eksploatacji. 1, 127-139. (in Polish).
[14] Przybyłowicz, K. (2012). Metal Science. Warszawa: WNT. (in Polish).
[15] El Fawjhry, M.K. (2018). Feasibility of new ladle-treated Hadfield steel for mining purposes. International Journal of Minerals, Metallurgy and Materials. 25(3), 300, https://doi.org/10.1007/s12613-018-1573-z.
[16] Subramanyan, D.K, Swansieger, A.E. and Avery, H.S. (1990). Austenitic manganese steels. In ASM Metals Handbook. Vol. 1, 10th Ed. (p. 822-840). India: American Society of Metals, India.
[17] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[18] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel in Translation. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[19] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[20] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011 (pp. 763-771). Indianapolis, USA.
[21] El Fawkhry, M.K. (2021). Modified hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5.
[22] EI Fawkhry, M.K., Fathy, A.M. and Eissa, M.M. (2015). New energy saving technology for producing Hadfield steel to high gouging applications. Steel Research International. 86(3), 223-230. https://doi.org/10.1002/srin.201300388.
[23] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569
[24] Sobula, S., Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 4, 82-86. ISSN (1897-3310).
[25] Zambrano, O.A., Tressia, G., Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: doi.org/10.1016/j.engfailanal.2020.104621.
[26] Wróbel, T., Bartocha, D., Jezierski, J., Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks E. High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In Współpraca 2023 : XXIX international scientific conference of Polish, Czech and Slovak foundrymen, 26-28 April 2023. Niepołomice.
[27] Młyński, M., Sobula, S., Furgał, G. (2001). Economic aspects of the oxygen-recovery melts of Hadfield cast steel in the Foundry of Metalodlew S.A. Przegląd Odlewnictwa. 51(11), 382-384. (in Polish).
[28] Wróbel, T., Bartocha, D., Jezierski, J., Sobula, S., Kostrzewa K., Feliks E. (2023). High-manganese alloy cast steel used for cast elements of railway infrastructure. Stal, Metale & Nowe Technologie. 1-2, 30-34. (in Polish).
Go to article

Authors and Affiliations

Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID
Wojciech P. Depczyński
1
ORCID: ORCID
Kazimierz Bolanowski
1
ORCID: ORCID

  1. Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Manufacturing by casting method in aluminum and its alloys is preferred by different industries today. It may be necessary to improve the mechanical properties of the materials according to different industries and different strength requirements. The mechanical properties of metal alloys are directly related to the microstructure grain sizes. Therefore, many grain reduction methods are used during production or heat treatment. In this study, A356 alloys were molded into molds at 750 °C and exposed to vibration frequency at 0, 8.33, 16.66, 25, and 33.33 Hz during solidification. Optical microscopes images were analyzed in image analysis programs to measure the grain sizes of the samples that solidified after solidification. In addition, microhardness tests of samples were carried out to examine the effect of vibration and grain reduction on mechanical behavior. In the analyzes made, it was determined that the grain sizes decreased from 54.984 to 26.958 μm and the hardness values increased from 60.48 to 126.94 HV with increasing vibration frequency.
Go to article

Bibliography

[1] Mondolfo, L.F. (1979). Aluminium Alloys Structures and Properties. London: Butterworths, 806.
[2] Kocatepe, K. & Burdett, C.F. (2000) Effect of low frequency vibration on macro and micro structures of LM6 alloys. Journal of Materials Science, 35(13), 3327-3335. https://doi.org/10.1023/A:1004891809731.
[3] Schaffer, P.L. & Dahle, A.K. (2005). Settling behaviour of different grain refiners in aluminium. Materials Science and Engineering. A, 413, 373-378. https://doi.org/10.1016/j.msea.2005.08.202.
[4] Kumar, P.S., Abhilash, E., Joseph, M.A. (2010). Solidification under mechanical vibration: variation in metallurgical structure of gravity die cast A356 aluminium alloy. In International Conference on Frontiers in Mechanical Engineering (FIME), 20-22 May 2010 (pp. 140-146). India.
[5] Taghavi, F., Saghafian, H. & Kharrazi, Y.H. (2009). Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Materials & Design. 30(5), 1604-1611. https://doi.org/10.1016/j.matdes.2008.07.032.
[6] Hernandez, F.R. & Sokolowski, J.H. (2006). Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al–Si hypereutectic alloys. Journal of Alloys and Compounds. 426(1-2), 205-212. https://doi.org/10.1016/j.jallcom.2006.09.039.
[7] Jian, X., Meek, T.T. & Han, Q. (2006). Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scripta Materialia. 54(5), 893-896. https://doi.org/10.1016/j.scriptamat.2005.11.004.
[8] Chirita, G., Stefanescu, I., Soares, D. & Silva, F.S. (2009). Influence of vibration on the solidification behaviour and tensile properties of an Al–18 wt% Si alloy. Materials & Design. 30(5), 1575-1580. https://doi.org/10.1016/ j.matdes.2008.07.045.
[9] Promakhov, V.V., Khmeleva, M.G., Zhukov, I.A., Platov, V.V., Khrustalyov, A.P., & Vorozhtsov, A.B. (2019). Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties. Metals. 9(1), 87. https://doi.org/10.3390/met9010087.
[10] Selivorstov, V., Dotsenko, Y. & Borodianskiy, K. (2017). Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy. Materials. 10(5), 560. https://doi.org/10.3390/ma10050560.
[11] Yüksel, Ç. (2018). Titreşimli katilaştirmanin birincil ve ikincil Al7Si0, 3mg alüminyum alaşimlarinin içyapisina etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 7(2), 986-992.
[12] Sulaiman, S. & Zulkifli, Z.A. (2018). Effect of mould vibration on the mechanical properties of aluminium alloy castings. Advances in Materials and Processing Technologies. 4(2), 335-343. https://doi.org/10.1080/ 2374068X.2017.1421737.
[13] Y. Seetharama Rao, Rajana Vara Prasad, Sri Ram Murthy Paladugu (2019). Experimental investigations of microstructure and mechanical properties of aluminium alloy using vibration mold. Journal of Recent Activities in Production e-ISSN: 2581-9779. 4(2), 25-34.
[14] ASM International Handbook Committee. (1990). ASM Handbook, Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International.
[15] Kocatepe, K. (2007). Effect of low frequency vibration on porosity of LM25 and LM6 alloys. Materials & Design. 28(6), 1767-1775. https://doi.org/10.1016/ j.matdes.2006.05.004.
[16] Naik, S.N., & Walley, S.M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science. 55(7), 2661-2681. https://doi.org/10.1007/s10853-019-04160-w.
Go to article

Authors and Affiliations

Taha Süreyya Özgü
1
ORCID: ORCID
Recep Çalın
1
ORCID: ORCID
Naci Arda Tanış
1
ORCID: ORCID

  1. Kırıkkale University, Turkey

This page uses 'cookies'. Learn more