Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper reports on compact CMOS-based electronic sources and detectors developed for the terahertz frequency range. It was demonstrated that with the achievable noise-equivalent power levels in a few tens of pW\Hz 1/2 and the emitted power in the range of 100 μW, one can build effective quasi-optical emitter-detector pairs operating in the 200–266 GHz range with the input power-related signal-to-noise ratio reaching 70 dB for 1 Hz-equivalent noise bandwidth. The applicability of these compact devices for a variety of applications including imaging, spectroscopy or wireless communication links was also demonstrated.
Go to article

Authors and Affiliations

Dmytro B. But
1 2
ORCID: ORCID
Alexander V. Chernyadiev
1
ORCID: ORCID
Kęstutis Ikamas
3 4
ORCID: ORCID
Cezary Kołaciński
1 5
ORCID: ORCID
Anastasiya Krysl
6
Hartmut G. Roskos
6
ORCID: ORCID
Wojciech Knap
1
ORCID: ORCID
Alvydas  Lisauskas
1 3
ORCID: ORCID

  1. CENTERA, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  2. NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
  3. Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
  4. General Jonas Žemaitis Military Academy of Lithuania, Šilo Av. 5A, LT-10322 Vilnius, Lithuania
  5. Łukasiewicz Research Network Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  6. Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
Download PDF Download RIS Download Bibtex

Abstract

Terahertz (THz) transmission, photoresistance, and electrical conductivity experiments were carried out at 4.2 K on a sample with modulation-doped CdTe/Cd 1-xMg xTe multiple quantum wells. The measurements were carried out as a function of a magnetic field B up to 9 T and a radiation frequency between 0.1 and 0.66 THz. A broad minimum in the transmission curve was observed at magnetic fields corresponding to the cyclotron resonance at given THz frequency which was followed at larger fields by an oscillatory signal, periodic in B −1. Shubnikov-de Haas oscillations were observed in magnetoconductivity and in photoresistance. Each of these experimental signals revealed the same electron concentration equal to (1.01 ± 0.03) ∙1012 cm −2. THz spectroscopy results are compared with data obtained on a single quantum well and are discussed from the point of view of using such multiple quantum wells as THz optical elements.
Go to article

Authors and Affiliations

Jerzy Łusakowski
1 2
ORCID: ORCID
Andrzej Frączak
1
Mikołaj Grymuza
1
Eryk Imos
1
Adam Siemaszko
1
Wiktoria Solarska
1
Aniela Woyciechowska
1
Maciej Zaremba
1
Rafał Zdunek
1
Krzysztof Karpierz
1
Zbigniew Adamus
3 4
ORCID: ORCID
Tomasz Słupiński
3 4
ORCID: ORCID
Tomasz Wojtowicz
3
ORCID: ORCID

  1. Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  2. CENTERA Laboratories, Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29, 01-142 Warsaw, Poland
  3. International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  4. Institute of Physics,Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

This page uses 'cookies'. Learn more