Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine how the change of glass laminate fibres to flax fibres will affect the stability of thin-walled angle columns. Numerical analyses were conducted by the finite element method. Short L-shaped columns with different configurations of reinforcing fibres and geometric parameters were tested. The axially compressed structures were simply supported on both ends. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fibre arrangement were tested. Moreover, the influence of a flange width change by ±100% and a column length change by ±33% on the bifurcation load of the compressed structure was determined. It was found that glass laminate could be successfully replaced with a bio-laminate with flax fibres. Similar results were obtained for both materials. For the same configuration of fibre arrangement, the flax laminate showed a lower sensitivity to the change in flange width than the glass material. However, the flax laminate column showed a greater sensitivity to changes in length than the glass laminate one. In a follow-up study, selected configurations will be tested experimentally.
Go to article

Bibliography

[1] S.V. Joshi, L.T. Drzal, A.K Mohanty, and S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3):371–376, 2004. doi: 10.1016/j.compositesa.2003.09.016.
[2] P. Wambua, J. Ivens .and I.Verpoest. Natural fibers: can they replace glass in fiber reinforced plastics? Composites Science and Technology, 63(9):1259–1264, 2003. doi: 10.1016/S0266-3538(03)00096-4.
[3] D.B. Dittenber and H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8):1419–1429, 2012. doi: 10.1016/j.compositesa.2011.11.019.
[4] A. Stamboulis, C.A. Baillie, and T. Peijs. Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8):1105–1115, 2001. doi: 10.1016/S1359-835X(01)00032-X.
[5] L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest. Why are designers fascinated by flax and hemp fiber composites? Composites Part A: Applied Science and Manufacturing, 83:193–205, 2016. doi: 10.1016/j.compositesa.2015.11.004.
[6] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, And D. Hui. Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7):655–663, 2009. doi: 10.1016/j.compositesb.2009.04.014.
[7] M.I. Misnon, Md M. Islam, J.A. Epaarachchi, and K.T. Lau. Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 59:359–368, 2014. doi: 10.1016/j.matdes.2014.03.022.
[8] T. Gurunathan, S. Mohanty, and S.K. Nayak. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77:1–25, 2015. doi: 10.1016/j.compositesa.2015.06.007.
[9] H.L. Bos, M.J.A. Van Den Oever, and O.C.J.J. Peters. Tensile and compressive properties of flax fibers for natural fiber reinforced composites. Journal of Materials Science, 37:1683–1692, 2002. doi: 10.1023/A:1014925621252.
[10] C. Baley. Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing, 33(7):939–948, 2002. doi: 10.1016/S1359-835X(02)00040-4.
[11] C. Baley, M. Gomina, J. Breard, A. Bourmaud, and P. Davies. Variability of mechanical properties of flax fibers for composite reinforcement. A review. Industrial Crops and Products, 145:111984, 2020. doi: 10.1016/j.indcrop.2019.111984.
[12] I. El Sawi, H. Bougherara, R. Zitoune, and Z. Fawaz. Influence of the manufacturing process on the mechanical properties of flax/epoxy composites. J ournal of Biobased Materials and Bioenergy, 8(1):69–76, 2014. doi: 10.1166/jbmb.2014.1410.
[13] K. Strohrmann and M. Hajek. Bilinear approach to tensile properties of flax composites in finite element analyses. Journal of Materials Science, 54:1409–1421, 2019. doi: 10.1007/s10853-018-2912-1.
[14] Z. Mahboob, Y. Chemisky, F. Meraghni, and H. Bougherara. Mesoscale modelling of tensile response and damage evolution in natural fiber reinforced laminates. Composites Part B: Engineering, 119:168–183, 2017. doi: 10.1016/j.compositesb.2017.03.018.
[15] Z. Mahboob, I. El Sawi, R. Zdera, Z. Fawaz, and H. Bougherara. Tensile and compressive damaged response in Flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92:118–133, 2017. doi: 10.1016/j.compositesa.2016.11.007.
[16] C. Nicolinco, Z. Mahboob, Y. Chemisky, F. Meraghni, D. Oguamanam, and H. Bougherara. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing, 140:106153, 2021. doi: 10.1016/j.compositesa.2020.106153.
[17] R.T. Durai Prabhakaran, H. Teftegaard, C.M. Markussen, and B. Madsen. Experimental and theoretical assessment of flexural properties of hybrid natural fiber composites. Acta Mechanica, 225:2775–2782, 2014. doi: 10.1007/s00707-014-1210-5.
[18] M. Fehri, A. Vivet, F. Dammak, M. Haddar, and C. Keller. A characterization of the damage process under buckling load in composite reinforced by flax fibers. Journal of Composites Science, 4(3):85, 2020. doi: 10.3390/jcs4030085.
[19] V. Gopalan, V. Suthenthiraveerappa, J.S. David, J. Subramanian,A.R. Annamalai, and C.P. Jen. Experimental and numerical analyses on the buckling characteristics of woven flax/epoxy laminated composite plate under axial compression. Polymers, 13(7):995, 2021. doi: 10.3390/polym13070995.
[20] J. Gawryluk and A. Teter. Experimental-numerical studies on the first-ply failure analysis of real, thin-walled laminated angle columns subjected to uniform shortening. Composite Structures, 269:114046, 2021. doi: 10.1016/j.compstruct.2021.114046.
[21] J. Gawryluk. Impact of boundary conditions on the behavior of thin-walled laminated angle column under uniform shortening. Materials, 14(11):2732, 2021. doi: 10.3390/ma14112732.
[22] J. Gawryluk. Post-buckling and limit states of a thin-walled laminated angle column under uniform shortening. Engineering Failure Analysis, 139:106485, 2022. doi: 10.1016/j.engfailanal.2022.106485.
[23] ABAQUS 2020 HTML Documentation, DassaultSystemes.
[24] T. Kubiak and L. Kaczmarek, Estimation of load-carrying capacity for thin-walled composite beams. Composite Structures, 119:749–756, 2015. doi: 10.1016/j.compstruct.2014.09.059.
[25] T. Kubiak, S. Samborski, and A. Teter. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 133:921–929, 2015. doi: 10.1016/j.compstruct.2015.08.023.
[26] M. Urbaniak, A. Teter, and T. Kubiak. Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Composite Structures, 134:199–208, 2015. doi: 10.1016/j.compstruct.2015.08.076.
[27] A. Teter and Z. Kolakowski. On using load-axial shortening plots to determine the approximate buckling load of short, real angle columns under compression. Composite Structures, 212:175–183, 2019. doi: 10.1016/j.compstruct.2019.01.009.
[28] A. Teter, Z. Kolakowski, and J. Jankowski. How to determine a value of the bifurcation shortening of real thin-walled laminated columns subjected to uniform compression? Composite Structures, 247, 12430, 2020 doi: 10.1016/j.compstruct.2020.112430.
Go to article

Authors and Affiliations

Jarosław Gawryluk
1
ORCID: ORCID

  1. Department of Applied Mechanics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The automotive industry requires more and more light materials with good strength and formability at the same time. The answer to this type of demands are, among others, aluminium alloys of the 6xxx series, which are characterized by a high strength-to-weight ratio and good corrosion resistance. Different material state can affect formability of AlMgSi sheets. These study analysed the influence of heat treatment conditions on the drawability of the sheet made of 6082 aluminium alloy. The studies on mechanical properties and plastic anisotropy for three orientations (0, 45, 90°) with respect to the rolling direction were carried out. The highest plasticity was found for the material in the 0 temper condition. The influence of heat treatment conditions on the sheet drawability was analysed using the Erichsen, Engelhardt-Gross, Fukui and AEG cupping tests. It was found that the material state influenced the formability of the sheet. In the case of bulging, the sheet in the annealed state was characterized by greater drawability, and in the deep drawing process, greater formability was found for the naturally aged material.
Go to article

Bibliography

[1] W. Muzykiewicz, Validation tests for the 6082-grade sheet in the "0" state with an account of its application for deep drawing processes. Rudy i Metale Nieżelazne, 51(7):422–427, 2006. (in Polish).
[2] A.C.S. Reddy, S. Rajesham, P.R. Reddy, and A.C. Umamaheswar. Formability: A review on different sheet metal tests for formability. AIP Conference Proceedings, 2269:030026, 2020. doi: 10.1063/5.0019536.
[3] Y. Dewang, V. Sharma, and Y. Batham. influence of punch velocity on deformation behavior in deep drawing of aluminum alloy. Journal of Failure Analysis and Prevention, 21(2):472–487, 2021. doi: 10.1007/s11668-020-01084-5.
[4] S. Bansal. Study of Deep Drawing Process and its Parameters Using Finite Element Analysis. Master Thesis, Delhi Technological University, India, 2022.
[5] E. Nghishiyeleke, M. Mashingaidze, and A. Ogunmokun, Formability characterization of aluminium AA6082-O sheet metal by uniaxial tension and Erichsen cupping tests. International Journal of Engineering and Technology, 7(4):6768–6777, 2018.
[6] J. Adamus, M. Motyka, and K. Kubiak. Investigation of sheet-titanium drawability. In: 12th World Conference on Titanium (Ti-2011), Beijing, China, 19-24 June 2011.
[7] R.R. Goud, K.E. Prasad, and S.K. Singh. formability limit diagrams of extra-deep-drawing steel at elevated temperatures. Procedia Materials Science, 6:123–128, 2014. doi: 10.1016/j.mspro.2014.07.014.
[8] R. Norz, F.R. Valencia, S. Gerke, M. Brünig, and W. Volk. Experiments on forming behaviour of the aluminium alloy AA6016. IOP Conference Series: Materials Science and Engineering, 1238(1):012023, 2022. doi: 10.1088/1757-899X/1238/1/012023.
[9] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1):37–49, 2000. doi: 10.1016/S0921-5093(99)00653-X.
[10] J.C. Benedyk. Aluminum alloys for lightweight automotive structures. In P.K. Mallick (ed.): Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, pages 79–113, 2010. doi: 10.1533/9781845697822.1.79.
[11] M. Bloeck. Aluminium sheet for automotive applications. In J. Rowe (ed.): Advanced Materials in Automotive Engineering. Woodhead Publishing Limited, pages 85–108, 2012. doi: 10.1533/9780857095466.85.
[12] N.I. Kolobnev, L.B. Ber, L.B. Khokhlatova, and D.K. Ryabov. Structure, properties and application of alloys of the Al – Mg – Si – (Cu) system. Metal Science and Heat Treatment, 53(9-10):440–444, 2012. doi: 10.1007/s11041-012-9412-8.
[13] P. Lackova, M. Bursak, O. Milkovic, M. Vojtko, and L. Dragosek, Influence of heat treatment on properties of EN AW 6082 aluminium alloy. Acta Metallurgica Slovaca, 21(1):25–34, 2015. doi: 10.12776/ams.v21i1.553.
[14] R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. Uggowitzer, and S. Pogatscher. Property criteria for automotive Al-Mg-Si sheet alloys. Materials, 7(7):5047–5068, 2014. doi: 10.3390/ma7075047.
[15] N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, and S. van der Zwaag. Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys. Materials Characterization, 49(5):409–420, 2002. doi: 10.1016/S1044-5803(03)00036-6.
[16] G. Mrówka-Nowotnik. Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Archives of Materials Science and Engineering, 46(2):98–107, 2010.
[17] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Tensile properties and fracture toughness of heat treated 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 12(1-2):105–108, 2006.
[18] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 32(2):162–170, 2009.
[19] X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, and X. Li. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals, 9(2):173, 2019. doi: 10.3390/met9020173.
[20] Z. Li, L. Chen, J. Tang, G. Zhao, and C. Zhang. Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study. Journal of Alloys and Compounds, 848:156561, 2020. doi: 10.1016/j.jallcom.2020.156561.
[21] J.R. Hirsch. Automotive trends in aluminium - the European perspective. Materials Forum, 28(1):15–23, 2004.
[22] W. Moćko and Z.L. Kowalewski. Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport, 19(2):345–351, 2012.
[23] N. Kumar, S. Goel, R. Jayaganthan, and H.-G. Brokmeier. Effect of solution treatment on mechanical and corrosion behaviors of 6082-T6 Al alloy. Metallography, Microstructure, and Analysis, 4(5):411–422, 2015. doi: 10.1007/s13632-015-0219-z.
[24] M. Fujda, T. Kvackaj, and K. Nagyová. Improvement of mechanical properties for EN AW 6082 aluminium alloy using equal-channel angular pressing (ECAP) and post-ECAP aging. Journal of Metals, Materials and Minerals, 18(1):81–87, 2008.
[25] I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia. Tensile behaviour of 6082 aluminium alloy sheet under different conditions of heat treatment, temperature and strain rate. Key Engineering Materials, 423:105–112, 2009. doi: 10.4028/www.scientific.net/KEM.423.105.
[26] O. Çavuşoğlu, H.İ. Sürücü, S. Toros, and M. Alkan, Thickness dependent yielding behavior and formability of AA6082-T6 alloy: experimental observation and modeling. The International Journal of Advanced Manufacturing Technology, 106:4083–4091, 2020. doi: 10.1007/s00170-019-04878-6.
[27] J. Slota, I. Gajdos, T. Jachowicz, M. Siser, and V. Krasinskyi. FEM simulation of deep drawing process of aluminium alloys. Applied Computer Science, 11(4):7–19, 2015.
[28] Ö. Özdilli. An investigation of the effects of a sheet material type and thickness selection on formability in the production of the engine oil pan with the deep drawing method. International Journal of Automotive Science And Technology, 4(4):198–205, 2020. doi: 10.30939/ijastech..773926.
[29] W.T. Lankford, S.C. Snyder, and J.A. Bauscher. New criteria for predicting the press performance of deep drawing sheets. ASM Transactions Quarterly, 42:1197–1232, 1950.
[30] A.C. Sekhara Reddy, S. Rajesham, and P. Ravinder Reddy. Evaluation of limiting drawing ratio (LDR) in deep drawing by rapid determination method. International Journal of Current Engineering and Technology, 4(2):757–762, 2014.
[31] R.U. Kumar. Analysis of Fukui’s conical cup test. International Journal of Innovative Technology and Exploring Engineering, 2(2):30–31, 2013.
[32] Ł. Kuczek, W. Muzykiewicz, M. Mroczkowski, and J. Wiktorowicz. Influence of perforation of the inner layer on the properties of three-layer welded materials. Archives of Metallurgy and Materials, 64(3):991–996, 2019. doi: 10.24425/AMM.2019.129485.
[33] O. Engler and J. Hirsch. Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups. Materials Science and Engineering: A, 452–453:640–651, 2007. doi: 10.1016/j.msea.2006.10.108.
[34] M. Koç, J. Culp, and T. Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology, 174(1-3):342–354, 2006. doi: 10.1016/j.jmatprotec.2006.02.007.
[35] C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart. Positive effect of natural pre-ageing on precipitation hardening in Al–0.44 at% Mg–0.38 at% Si alloy. Ultramicroscopy, 109(5):585–592, 2009. doi: 10.1016/j.ultramic.2008.12.002.
[36] S. Jin, T. Ngai, G. Zhang, T. Zhai, S. Jia, and L. Li. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. Materials Science and Engineering: A, 724:53–59, 2018. doi: 10.1016/j.msea.2018.03.006.
[37] E. Ishimaru, A. Takahashi, and N. Ono. Effect of material properties and forming conditions on formability of high-purity ferritic stainless steel. Nippon Steel Technical Report. Nippon Steel & Sumikin Stainless Steel Corporation, 2010.
[38] E.H. Atzema. Formability of auto components. In R. Rana and S.B. Singh (eds.): Automotive Steels. Design, Metallurgy, Processing and Applications. Woodhead Publishing, pages 47–93, 2017. doi: 10.1016/B978-0-08-100638-2.00003-1.
Go to article

Authors and Affiliations

Łukasz Kuczek
1
ORCID: ORCID
Marcin Mroczkowski
1
ORCID: ORCID
Paweł Turek
1

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland

This page uses 'cookies'. Learn more