Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Surface phenomena play a major role in metallurgical processes; their operation results, among others, from the surface tension of liquid oxidic systems. One of the methods of determining surface tension of oxidic systems is performing calculations with Butler’s method. Surface tension was calculated for two- and three-component liquid oxidic systems typical of metallurgical processes. The determined dependence of surface tension in FeO-SiO2 at temp. 1773 K and CaO-SiO2 at temp.1873 K showed that with the growing participation of SiO2 surface tension decreased. Analogous calculations were performed for three-component systems: CaO-Al2O3-SiO2 and MnO-Al2O3- SiO2. The results of calculations of surface tension were determined for temp. 1873 K and compared with the results obtained by T. Tanaka et al. [19]. In both cases the increase of Al2O3 content resulted in a growth of surface tension. The simulation results were higher than experimental result, as compared to the literature data.

Go to article

Authors and Affiliations

D. Kalisz
Download PDF Download RIS Download Bibtex

Abstract

APNB (alkaline phenolic no bake), widely known as Alphaset is one of the major sand binder systems used in foundries to make molds and cores without application of heat or gas. This is a two part system comprising of a phenol-formaldehyde resin in alkaline medium as binder and range of esters of dibasic acids and/or polyhydric alcohols as hardeners.

Resin performance varies depending upon formulations. Major variables in formulations are mole ratio of phenol: formaldehyde, total alkali content, ratio of two alkalis (NaOH & KOH) and molecular weight of polymers i.e. chain length.

In present work, one mole ratio of phenol & formaldehyde has been chosen to prepare 8 resins with following details.

Table 1.

Physical and chemical properties of eight (fresh) resins, A to H

Properties A B C D E F G H
Viscosity at 30°C (mPs-a) 56 47 66 51 39 44 49 52
Na (%) 5.94 3.21 5.94 3.21 nil 2.73 nil 2.73
K (%) nil 3.31 nil 3.31 7.18 3.87 7.18 3.87
Molecular weight Low Low High High Low Low High High
Gel Time at 121°C, mt-sec 27-0 29-30 24-0 30-0 30-0 27-30 26-30 26-0
Moisture (%) 52.43 52.42 53.01 53.75 55.58 54.12 51.61 54.03
Non-volatile Content (%) 48.74 47.25 49.10 49.35 47.63 47.32 48.06 48.29
Specific Gravity 1.182 1.177 1.183 1.180 1.172 1.184 1.178 1.188
Free Phenol (%) 0.47 0.42 0.44 0.43 0.37 0.27 0.41 0.20

Properties of these 8 formulations have been studied for strength and viscosity over a period of 12 weeks in 4 week interval.

Attempt has been made to develop a simple test for simulating hot & retained strength of molds in laboratory. Process followed for chasing hot and retained strength is described under clause 2.

With more and more understanding of the chemistry of alphaset system in last three & half decades it has been possible to identify role of variables contributing towards specific properties vis a vis developing tailor made formulations to fulfill requirements of individual foundries right from mold making to de coring.

Go to article

Authors and Affiliations

D.K. Ghosh
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study on the effect of passage of time on magnesium content in iron alloys and the effect of magnesium content on the number of vermicular graphite precipitations per unit surface area and value of the longitudinal ultrasonic wave velocity for two different vermicularization methods. The study was carried out with the use of inspection bar castings. For specific production conditions, it has been found that in case of application of both the cored wire injection method and the method of pouring liquid metal over magnesium master alloy on ladle bottom, the satisfactory level of magnesium content in the bottom-pour ladle, for which it was still possible to obtain castings with vermicular graphite, was 0.018% Mg. In case of the cored wire injection method, the “time window” available to a pouring station at which castings of vermicular cast iron are expected to be obtained, was about 5 minutes. This corresponds to the longitudinal ultrasonic wave velocity values exceeding 5500 m/s and the number of graphite precipitations per unit surface area above 320 mm–2. In case of the master alloy method, the respective “time window” allowing to obtain castings of vermicular cast iron was only about 3 minutes long. This corresponds to the longitudinal ultrasonic wave velocity value above 5400 m/s and the number of graphite precipitations per unit surface area above 380 mm–2.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
Marek Mróz
ORCID: ORCID
B. Kupiec
D. Pająk
M. Kawiński
Download PDF Download RIS Download Bibtex

Abstract

The research paper presents the results of testing the strength and technological properties of molding sand with gypsum binder, the bonding process proceeded: naturally or conventionally. The tests included mass containing (parts by weight): 78 pbw. Grudzeń-Las quartz sand, 22 pbw. plaster gypsum "Dolina Nidy” and 9 pbw. water. Measurements of compressive strength, shear, tensile and bending as well as permeability and looseness were carried out on standard cylindrical samples kept in the air for 1 - 96 hours or dried at 110 oC for 1 - 8 hours. The results of the analysis were analyzed in connection with the mass structure and construction binding bridges warp grains observed with a scanning microscope (SEM). The influence of drying intensity on the bonding process and related mass properties has been demonstrated, especially from the point of view of the possibility of selection and / or intensification of a specific curing method for use in the production of gypsum binger molds and cores.

Go to article

Authors and Affiliations

K. Granat
P. Paduchowicz
A. Dziedzic
M. Jamka
P. Biały
Download PDF Download RIS Download Bibtex

Abstract

This paper presents practical capabilities of a system for ceramic mould quality forecasting implemented in an industrial plant (foundry). The main assumption of the developed solution is the possibility of eliminating a faulty mould from a production line just before the casting operation. It allows relative savings to be achieved, and faulty moulds, and thus faulty castings occurrence in the production cycle to be minimized. The numerical computing module (the DEFFEM 3D package), based on the smoothed particle hydrodynamics (SPH) is one of key solutions of the system implemented. Due to very long computing times, the developed numerical module cannot be effectively used to carry out multi-variant simulations of mould filling and solidification of castings. To utilize the benefits from application of the CUDA architecture to improve the computing effectiveness, the most time consuming procedure of looking for neighbours was parallelized (cell-linked list method). The study is complemented by examples of results of performance tests and their analysis.

Go to article

Authors and Affiliations

Marcin Hojny
K. Żaba
Tomasz Dębiński
ORCID: ORCID
J. Porada
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to compare the efficiency of various outlier correction methods for ECG signal processing in biometric applications. The main idea is to correct anomalies in various segments of ECG waveform rather than skipping a corrupted ECG heartbeat in order to achieve better statistics. Experiments were performed using a self-collected Lviv Biometric Dataset. This database contains over 1400 records for 95 unique persons. The baseline identification accuracy without any correction is around 86%. After applying the outlier correction the results were improved up to 98% for autoencoder based algorithms and up to 97.1% for sliding Euclidean window. Adding outlier correction stage in the biometric identification process results in increased processing time (up to 20%), however, it is not critical in the most use-cases.

Go to article

Authors and Affiliations

Su Jun
Miroslaw Szmajda
Volodymyr Khoma
Yuriy Khoma
Dmytro Sabodashko
Orest Kochan
Jinfei Wang
Download PDF Download RIS Download Bibtex

Abstract

Generation of two identical ns laser pulses spaced by a single µs time interval by means of sequential switching of the output mirror transmittance in a diode-pumped Nd:YAG laser is reported, to our knowledge, for the first time. The theoretical study of the process of transmission losses switching is developed. This analysis confirms the possibility of generation of two identical Q-switched laser pulses with 100% efficiency with respect to the referenced single pulse energy. The detailed characterization of the laser in free-running, single and double Q-switching regimes is presented. The laser can be applied in different branches of metrology as PIV, LIBS or holographic interferometry.

Go to article

Authors and Affiliations

Marek Skórczakowski
Waldemar Żendzian
Zdzisław Jankiewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Jarosław Zygarlicki
Małgorzata Zygarlicka
Janusz Mroczka
Download PDF Download RIS Download Bibtex

Abstract

Achieving a reliable fault diagnosis for gears under variable operating conditions is a pressing need of industries to ensure productivity by averting unwanted breakdowns. In the present work, a hybrid approach is proposed by integrating Hu invariant moments and an artificial neural network for explicit extraction and classification of gear faults using time-frequency transforms. The Zhao-Atlas-Marks transform is used to convert the raw vibrations signals from the gears into time-frequency distributions. The proposed method is applied to a single-stage spur gearbox with faults created using electric discharge machining in laboratory conditions. The results show the effectiveness of the proposed methodology in classifying the faults in gears with high accuracy.

Go to article

Authors and Affiliations

F. Michael Thomas Rex
A. Andrews
A. Krishnakumari
P. Hariharasakthisudhan
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on automatic locking of tracking filters used in optical frequency transfer systems. General concept of such a system is briefly described and the problems with its automatic startup, originating in the use of the analog phase locked loop to filter weak, received signal, are discussed. A supervisory circuitry and algorithm to solve these problems is proposed. The frequency of the signal to be filtered is measured indirectly and the output frequency of the tracking filter is monitored. In the case of lack of synchronism (i:e: after the startup) a significant difference of these frequencies is measured and the supervisory algorithm forces the filter to tune into the right frequency and then allows it to synchronize. A system with the proposed solution was implemented and tested experimentally on a fiber optic link with high attenuation and multiple optical connectors. Transient signals during locking were recorded to investigate the system’s behavior in real environment. The system was evaluated in the link causing synchronization losses every 17 min on average. During measurements over 3 days, the whole system was synchronized for over 99.98% of time despite these difficult conditions.

Go to article

Authors and Affiliations

Przemysław Włodarczyk
Przemysław Krehlik
Łukasz Śliwczyński
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Przemysław Tabaka
ORCID: ORCID
Paweł Rózga
Download PDF Download RIS Download Bibtex

Abstract

Alternating current a.c. measurements enable to understand the physical and chemical processes occurring in semiconductor materials. Impedance spectroscopy has been successfully applied to study the responses of gas sensors based on metal oxides, such as TiO2, SnO2 and TiO2/SnO2 nanocomposites. This work is devoted to dynamic measurements of hydrogen sensor behaviour over the temperature range of 300–450◦C. Frequency dependence of the impedance signal gives evidence that 50 mol% TiO2/50 mol% SnO2 nanocomposites should be treated as resistive-type sensors. Temporal evolution of the response to 500 ppm H2 at 320◦C indicates a very short response time and much longer recovery.

Go to article

Authors and Affiliations

Bartłomiej Szafraniak
Anna Kusior
Marta Radecka
Katarzyna Zakrzewska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study on the influence of psychophysical stimuli on facial thermal emissions. Two independent groups of stimuli are proposed to investigate facial changes resulting from human stress and physical exhaustion. One pertains to physical effort while the other is linked to stress invoked by solving a simple written test. Subjects’ face reactions were measured through collecting and analysing long-wavelength infrared images. A methodology for numerical processing of images is proposed. Results of numerical analysis with respect to different facial regions of interest are provided. An automatic deep learning based algorithm to classify specific thermal face patterns is proposed. The algorithm consists of detection of regions of interests as well as numerical analysis of thermal energy emissions of facial parts. The results of presented experiments allowed the authors to associate emission changes in specific facial regions with psychophysical stimulations of the person being examined. This work proves high usability of thermal imaging to capture changes of heat distribution of face as reactions for external stimuli.

Go to article

Authors and Affiliations

Jarosław Panasiuk
Piotr Prusaczyk
Artur Grudzień
Marcin Kowalski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new simple and accurate frequency estimator of a sinusoidal signal based on the signal autocorrelation function (ACF). Such an estimator was termed as the reformed covariance for half-length autocorrelation (RC-HLA). The designed estimator was compared with frequency estimators well-known from the literature, such as the modified covariance for half-length autocorrelation (MC-HLA), reformed Pisarenko harmonic decomposition for half-length autocorrelation(RPHD-HLA), modified Pisarenko harmonic decomposition for half-length autocorrelation (MPHD-HLA), zero-crossing (ZC), and iterative interpolated DFT (IpDFT-IR) estimators. We determined the samples of the ACF of a sinusoidal signal disturbed by Gaussian noise (simulations studies) and the samples of the ACF of a sinusoidal voltage(experimental studies), calculated estimators based on the obtained samples, and computed the mean squared error(MSE) to compare the estimators. The errorswere juxtaposed with the Cramér–Rao lower bound (CRLB). The research results have shown that the proposed estimator is one of the most accurate, especially for SNR > 25 dB. Then the RC-HLA estimator errors are comparable to the MPHD-HLA estimator errors. However, the biggest advantage of the developed estimator is the ability to quickly and accurately determine the frequency based on samples collected from no more than five signal periods. In this case, the RC-HLA estimator is the most accurate of the estimators tested.

Go to article

Authors and Affiliations

Sergiusz Sienkowski
Mariusz Krajewski
Download PDF Download RIS Download Bibtex

Abstract

The precise location of the needle tip is critical in robot-assisted needle-based percutaneous interventions. An automatic needle tip measuring system based on binocular vision technology with the advantages of non-contact, excellent accuracy and high stability is designed and evaluated. First the measurement requirements of the prostate intervention robot are introduced. A laser interferometer is used as the reference for measuring the position of the needle tip whose relative position variation is described as the needle tip distance in the time domain. The parameters of the binocular cameras are obtained by Zhang’s calibration method. Then a robust needle tip extraction algorithm is specially designed to detect the pixel coordinates of the needle tip without installing the marked points. Once the binocular cameras have completed the stereo matching, the 3D coordinates of the needle tip are estimated. The measurement capability analysis (MCA) is used to evaluate the performance of the proposed system. The accuracy of the system can be controlled within 0.3621 mm. The agreement analysis is conducted by the Bland–Altman analysis, and the Pearson correlation coefficient is 0.999847. The P/T ratio value is 16.42% in the repeatability analysis. The results indicate that the accuracy and stability of the binocular vision needle tip measuring system are adequate to meet the requirement for the needle tip measurement in percutaneous interventions.

Go to article

Authors and Affiliations

Yuyang Lin
Yunlai Shi
Jun Zhang
ORCID: ORCID
Fugang Wang
Haichao Sun
Download PDF Download RIS Download Bibtex

Abstract

In this paper the problem of resistance measurement of ultrathin conductive lines on dielectric substrates dedicated for printing electronic industry is discussed. The measured line is transformed in a non-invasive way into a resonance circuit. By using a magnetic coupling between the source line and the tested line, the resistance measurement can be performed non-invasively, i:e. without a mechanical contact. The proposed contactless resistance measurement method is based on the resonance quality factor estimation and it is an example of the inverse problem in metrology.

Go to article

Authors and Affiliations

Krzysztof Szybiński

This page uses 'cookies'. Learn more