Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium additives.
Go to article

Bibliography

[1] Kopyciński, D. (2015). Shaping the structure and mechanical properties of cast iron intended for operation in difficult conditions of use (selected issues). Katowice-Gliwice: Monography. Archives of Foundry Engineering. (in Polish).
[2] Kleiner, S. & Track K. (2010). SiMo 1000 - Ein aluminium - legiertes gusseisen für Hochtemperatur-anwendungen. Giesserei. 97, 28-34.
[3] Papis, K., Tunziniand, S., Menk, W. (2014). Cast iron alloys for exhaust applications. In 10th International Symposium on the Science and Processing of Cast Iron - SPCI10, November 2014. Mar del Plata, Argentina.
[4] Öberg, Ch., Zhu, B. & Jonsson, S. (2017). Plastic deformation and creep of two ductile cast irons, SiMo51 and SiMo1000, during thermal cycling with large strain. Materials Science Forum. 925, 361-368. DOI: https://doi.org/10.4028/www.scientific.net/MSF.925.361.
[5] Guzik, E. (2001). Cast iron refining processes, selected issues. Katowice: Archiwum Odlewnictwa PAN. (in Polish).
[6] Collective work (2013). Foundry's guide. Kraków: STOP. 138-139. (in Polish).
[7] Keivan A. Kasvayee, & Ghasemali E. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Material Science & Engineering A. 708, 159-170. DOI: https://doi.org/10.1016/j.msea.2017.09.115.
[8] Li, D., Perrin,. R., Burger, G., McFarlan, D., Black, B., Logan, R. & Williams, R. (2004). Solidification behavior, microstructure, mechanical properties, hot oxidation and thermal fatigue resistance of high silicon SiMo nodular cast irons. SAE International, Warrendale, 1-12. DOI: https://doi.org/10.4271/2004-01-0792.
[9] Muller, J., Wolf, G. (2001). Optimierte magnesiumdrahtinjektionstechnik zur herstellung von hochwertigem gusseisen mit kugelgraphit aus kupolofenbasiseisn. Giessereiforschung. 53(3), 85-103.
[10] Hampl, J. & Elbert, T. (2010). On modelling of the effect of oxygen on graphite morphology and properties of modified cast irons. Archives of Foundry Engineering. 10(4), 55-60.
[11] Mocek, J., Chojecki, A. (2009). Changes in the gas atmosphere of the casting mould during pouring iron alloys. In XXXIII Scientific Founder's Day Conference. Kraków. (in Polish).
Go to article

Authors and Affiliations

Ł. Dyrlaga
1 2
D. Kopyciński
1
E. Guzik
1

  1. AGH University of Science and Technology, Department of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. METALPOL Węgierska Górka ul. Kolejowa 6, 34-350 Węgierska Górka, Poland
Download PDF Download RIS Download Bibtex

Abstract

Metallurgy is one of the key industries both in Russia and in the world. It has a significant influence on the situation in related industries. Therefore, the current state analysis of ferrous metallurgy production and its formation based on the short-term technological forecast is essential. Based on the foregoing, the research was aimed at analyzing the current state of ferrous metallurgy production in Russia and the impact of the COVID-19 pandemic on the prospects for industry development in the short term. The research studies the state of the ferrous metallurgy production in Russia and abroad before the COVID-19 pandemic, as well as the volume of industrial production in ferrous metallurgy and the industry structure. The COVID-19 pandemic has triggered a serious global recession, necessitating an analysis of the forecast for the development of the ferrous metallurgy industry. The research concludes that the Russian ferrous metals market is so far affected to a lesser extent compared to the European one.
Go to article

Bibliography

[1] Ryabov, I.V. (2013). Institutional factors of economic development in the steel industry in the Russian Federation. Ekonomika: vchera, segodnya, zavtra. 7-8, 59-71.
[2] Shatokha, V. (2016). Post-Soviet issues and sustainability of iron and steel industry in Eastern Europe. Mineral Processing and Extractive Metallurgy. 126, 1-8.
[3] MIT Emerging Trends Report (2013). Cambridge, MA: Massachusetts Institute of Technology. Retrieved from http://2013.forinnovations.org/upload/MIT_Technology_Review.pdf.
[4] Cuhls, K. (2003). From forecasting to foresight processes. new participative foresight activities in Germany. Journal of Forecasting. 22, 93-111.
[5] Harrington, E.C.Jr. (1965). The desirability function. Industrial quality control. 21(1), 494-498.
[6] Profile. 2017/2018. World steel association. Retrieved from https://www.worldsteel.org/en/dam/jcr:cea55824-c208-4d41-b387-6c233e95efe5/worldsteel+Profile+2017.pdf.
[7] World Steel Association (2018). Monthly crude steel and iron production statistics. Retrieved from https://www.worldsteel.org/publications/bookshop/productdetails.~2018-Monthly-crude-steel-and-iron-productionstatistics~PRODUCT~statistics2018~.html.
[8] Metalinfo.ru (2018). China continues to cut off excessive capacity. Retrieved from http://www.metalinfo.ru/ru/news/100765.
[9] World Steel Association (2017). Steel Statistical Yearbook 2017. Retrieved from https://www.worldsteel.org/en/dam/jcr:3e275c73-6f11-4e7f-a5d8-23d9bc5c508f/Steel% 2520Statistical%2520Yearbook%25202017_updated%2520version090518.pdf.
[10] World Steel Association (2017). 50 years of the World Steel Association. World Steel Association. Retrieved from https://www.worldsteel.org/en/dam/jcr:80fe4bd6-4eff-4690-96e6-534500d35384/50%2520years%2520of%2520worldsteel_EN.pdf.
[11] Dudin, M.N., Bezbakh, V.V., Galkina, M.V., Rusakova, E.P., Zinkovsky, S.B. (2019). Stimulating Innovation Activity in Enterprises within the Metallurgical Sector: the Russian and International Experience. TEM Journal. 8(4), 1366-1370.
[12] Kharlamov, A.S. (2012). Competitiveness issues of metallurgy. Position of Russia. Monograph. Moscow: Nauchnaya Kniga.
[13] Golubev, S.S, Chebotarev, S.S., Sekerin, V.D. & Gorokhova, A.E. (2017). Development of Employee Incentive Programmes regarding Risks Taken and Individual performance. International Journal of Economic Research. 14(7), 37-46.
[14] Deloitte (2020). Overview of the ferrous metallurgy market. Retrieved from https://www2.deloitte.com/ru/ru/pages/research-center/articles/overview-of-steel-and-ironmarket-2020.html.
[15] Katunin, V.V., Zinovieva, N.G., Ivanova, I.M., Petrakova, T.M. (2021). The main performance indicators of the ferrous metallurgy of Russia in 2020. Ferrous metallurgy. Bulletin of Scientific. Technical and Economic Information. 77(4), 367- 392. DOI: https://doi.org/10.32339/0135-5910-2021-4-367-392.
[16] National Credit Ratings (NCR) (2021). The metamorphoses of the pandemic. The forecast of recovery of the Russian economy branches as of June 2, 2021. Analytical Research. June 2, 2021. Retrieved from https://www.ratings.ru/files/research//corps/NCR_Recovery_Jun2021.pdf 24.
[17] Mingazov, S. (2021). Russian metallurgists have doubled payments to the budget. Forbes. Retrieved from https://www.forbes.ru/newsroom/biznes/430855-rossiyskiemetallurgi-udvoili-vyplaty-v-byudzhet.
Go to article

Authors and Affiliations

S.S. Golubev
1
V.D. Sekerin
1
A.E. Gorokhova
1
D.A. Shevchenko
1
A.Z. Gusov
2

  1. Moscow Polytechnic University, Bolshaya Semenovskaya Street, 38, Moscow, 107023, Russian Federation
  2. Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow, 117198, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

The paper is a summary of a project aimed at identifying and eliminating or minimizing the causes of frequent failures of the Krakow water supply network related to corrosion damage. The paper presents the method of searching for factors responsible for frequent corrosion damage. There were taken into account several factors that may destroy the pipes associated with corrosion processes, such as the composition of the water, aggressiveness of ground, or stray currents. The monitoring method of the corrosion processes applied to observe the condition of the water supply network was discussed. The study showed that the main problem appeared to be stray currents related to the electrical infrastructure widely present in a large city, such as a tram or railway network. To eliminate this threat, a cathodic protection system has been implemented to prevent further failures. There were also demonstrated results of research proving that the applied solutions are effective.
Go to article

Bibliography

[1] Zimoch, I. (2008). Reliability Analysis of Water Distribution Subsystem. Journal of KONBiN. 7(4), 307-326.
[2] Jażdżewska, A., Gruszka, M., Mazur, R., Orlikowski, J. & Banaś, J. (2020). Determination of the effect of environmental factors on the corrosion of water distribution system based on analysis of on-line corrosion monitoring results. Archives of Metallurgy and Materials. 65(1), 109-116.
[3] Orlikowski, J., Zielinski, A., Darowicki, K., Krakowiak, S., Zakowski, K., Slepski, P., Jazdzewska, A., Gruszka, M. & J. Banas (2016). Research on causes of corrosion in the municipal water supply system. Case Studies in Construction Materials. 4, 108-115.
[4] Zakowski, K., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Gruszka, M., & Banas, J. (2016). Electrolytic corrosion of water pipeline system in the remote distance from stray currents - Case study. Case Studies in Construction Materials. 4, 116-124.
[5] Jazdzewska, A., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Zakowski, K., Gruszka, M., & Banas, J. (2016). Critical analysis of laboratory measurements and monitoring system of water-pipe network corrosion-case study. Case Studies in Construction Materials. 4, 102-107.
[6] Loewenthal, R.E., Morrison, I. & Wentzel, M.C. (2004). Control of corrosion and aggression in drinking water systems. Water Science and Technology. 49(2), 9-18. DOI: https://doi.org/10.2166/wst.2004.0075
[7] Booth, G.H., Cooper, A.W., Cooper, P.M. & Wakerley, D.S. (1967). Criteria of Soil Aggressiveness Towards Buried Metals. I. Experimental Methods. British Corrosion Journal. 2(3), 104-108. DOI: https://doi.org/10.1179/000705967798326957
[8] Bertolini, L., Carsana, M. & Pedeferri, P. (2007). Corrosion behaviour of steel in concrete in the presence of stray current. Corrosion Science. 49(3), 1056-1068. DOI: https://doi.org/10.1016/j.corsci.2006.05.048
[9] Chen, Z., Koleva D. & van Breugel, K. (2017). A review on stray current-induced steel corrosion in infrastructure. Corrosion Reviews. 35(6), 397-423. DOI: https://doi.org/10.1515/corrrev-2017-0009
[10] Cui, G., Li, ZL., Yang, C. & Wang, M. (2016). The influence of DC stray current on pipeline corrosion. Petroleum Science. 13(1), 135-145. DOI: https://doi.org/10.1007/s12182-015-0064-3
[11] Memon, M. (2013). Understanding Stray Current Mitigation, Testing and Maintenance on DC Powered Rail Transit Systems. In Proceedings of the 2013 Joint Rail Conference. 2013 Joint Rail Conference, April 15-18, 2013. Knoxville, Tennessee, USA: ASME.
[12] Zhu, Q., Cao, A., Zaifend, W., Song, J. & Shengli, C. (2011). Stray current corrosion in buried pipeline. Anti-Corrosion Methods and Materials. 58(5), 234-237. DOI: https://doi.org/10.1108/00035591111167695
[13] M. Ormellese & A. Brenna (2017). Cathodic Protection and Prevention: Principles, Applications and Monitoring. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
[14] Peng, P., Zeng, X., Leng, Y., Yu, K. & Ni, Y. (2020). A New On-line Monitoring Method for Stray Current of DC Metro System. IEEJ Transactions on Electrical and Electronic Engineering. 15(10), 1482-1492.
[15] Yang, L. (2008). Techniques for Corrosion Monitoring. (2nd Ed.). USA: Woodhead Publishing.
[16] Banaś, J., Mazurkiewicz, B., Solarski W., Lelek-Borkowska, U. (2018). Development of the optimal corrosion monitoring system for inner surface of production tubing. In: J. Lubas (Ed.), Development of optimal concepts for the development of unconventional deposits (pp. 78-158). Kraków: Instytut Nafty i Gazu. (in polish)
[17] Scully, J.R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 56(2), 199-218.
[18] Yang, L., Pan, Y., Dunn, D.S. & Sridhar, N. (2005). RealTime Monitoring of Carbon Steel Corrosion in Crude Oil and Brine Mixtures using Coupled Multielectrode Sensors. In Corrosion 2005, April 2005 (05293). Houston, Texas.
[19] A.S. G01.05, ASTM G1 - 03(2017)e1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM, 2017, pp. 9.
[20] E.S.E. 12954:2019, General principles of cathodic protection of buried or immersed onshore metallic structures, CEN, 2019, pp. 44.
[21] E.S.E. 50162:2004, Protection against corrosion by stray current from direct current systems, CEN, 2004, pp. 44.
[22] Evitts, R.W. & Kennell, G.F. (2018). Chapter 15 - Cathodic Protection. In M. Kutz (Edt.), Handbook of Environmental Degradation of Materials (3rd Ed.) (pp. 301-321). UK, USA: William Andrew Publishing.
[23] Peabody, A.W. (2018). Control of Pipeline Corrosion. NACE E-Book
[24] Riskin, J. (2008). Chapter 2 - Corrosion and Protection of Underground and Underwater Structures Attacked by Stray Currents. In: J. Riskin (Edt.), Electrocorrosion and Protection of Metals (pp. 23-35). Amsterdam: Elsevier.
Go to article

Authors and Affiliations

U. Lelek-Borkowska
1
M. Gruszka
2
J. Banaś
1

  1. AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland
  2. WMK S.A., Senatorska 1, 30-106 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of research on the influence of the mould material on selected mechanical properties of wax models used for production of casting in investment casting method. The main goal was to compare the strength and hardness of samples produced in various media in order to analyse the applicability of the 3D printing technology as an alternative method of producing wax injection dies. To make the wax injection dies, it was decided to use a milled steel and 3D printed inserts made using FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) technology from HIPS (High Impact Polystyrene) and ABS (Acrylonitrile Butadiene Styrene). A semi-automatic vertical reciprocating injection moulding machine was used to produce the wax samples made of Freeman Flakes Wax Mixture – Super Pink. During injection moulding process, the mould temperature was measured each time before and after moulding with a pyrometer. Then, the samples were subjected to a static tensile test and a hardness test. It was shown that the mould material influences the strength properties of the wax samples, but not their final hardness.
Go to article

Bibliography

[1] Campbell, J. (2015). Complete casting handbook: metal casting processes, techniques and design. (2nd ed.). Oxford: Butterworth-Heinemann.
[2] Tamta, K. & Karunakar, D.B. (2020). Development of hybrid pattern material for investment casting process: an experimental investigation on improvement in pattern characteristics. Materials and Manufacturing Processes. 36(6), 744-751. DOI: 10.1080/10426914.2020.1854471.
[3] Bernat, L. & Popielarski, P. (2020). Identification of substitute thermophysical properties of gypsum mould. Archives of Foundry Engineering. 20(1), 5-8. DOI: 10.24425/afe.2020.131274.
[4] Guzera, J. (2010). Casting production in autoclaved gypsum moulds using investment casting method. Archives of Foundry Engineering. 10(3), 307-310. (in Polish).
[5] Sarbojeet, J. (2016). Crystallization behavior of waxes. Doctoral dissertation. Utah State University, Logan, United States of America.
[6] Unknown author, Investment casting process steps (lost wax). Retrieved January 12, 2021, from http://americancastingco.com/investment-casting-process.
[7] Ruwoldt, J., Humborstad Sørland, G., Simon, S., Oschmann, H-J. & Sjoblom, J. (2019). Inhibitor-wax interactions and PPD effect on wax crystallization: New approaches for GC/MS and NMR, and comparison with DSC, CPM, and rheometry. Journal of Petroleum Science and Engineering. 177. 53-68. DOI: 10.1016/j.petrol.2019.02.046
[8] Jung, T., Kim, J-N. & Kang, S-P. (2016). Influence of polymeric additives on paraffin waxes crystallization in model oils. Korean Journal of Chemical Engineering. 33(6), 1813-1822. DOI: https:://doi.org/10.1007/s11814-016-0052-3.
[9] Simnofske, D. & Mollenhauer, K. (2017). Effect of wax crystallization on complex modulus of modified bitumen after varied temperature conditioning rates. IOP Conference Series: Materials Science and Engineering. 236. DOI: 10.1088/1757-899X/236/1/012003.
[10] Edwards, R.T. (1957). Crystal Habit of Paraffin Wax. Industrial & Engineering Chemistry. 49(4), 750-757. DOI: https://doi.org/10.1021/ie50568a042.
[11] Dantas Neto A.A., Gomes, E.A.S. & Barros Neto, E.L., Dantas, T.N.C. & Moura C.P.A.M. (2009). Determination of wax appearance temperature (WAT) in paraffin/solvent systems by photoelectric signal and viscosimetry. Brazilian Journal of Petroleum and Gas. 3(4), 149-157. ISSN: 1982- 0593.
[12] Unknown author, Freeman super pink flake wax: technical data sheet. Retrieved January 12, 2021, from https://www.freemanwax.com/datasheets/Injection/tdssuperpink.pdf.
[13] Unknown author, M-series-specification. Retrieved January 12, 2021, from https://support.zortrax.com/m-seriesspecification/.
[14] Clarke, E.W. (1951). Crystal Types of Pure Hydrocarbons in the Paraffin Wax Range. Industrial & Engineering Chemistry. 43(11), 2526–2535. DOI: https://doi.org/10.1021/ie50503a037
Go to article

Authors and Affiliations

A. Kroma
1
P. Brzęk
1

  1. Poznan University of Technology, Institute of Materials Technology, Division of Foundry, Piotrowo 3, 61-138 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process.
Go to article

Bibliography

[1] Lai, G.Y. (2007). High-Temperature Corrosion and Materials Applications. ASM International.
[2] Davis, J.R. (Ed.). (1997). Industrial Applications of HeatResistant Materials. In Davis, J.R. (Eds.), ASM Specialty Handbook - Heat-Resistant Materials (pp. 67-85). ASM International.
[3] Piekarski, B. (2012). Creep-resistant castings used in heat treatment furnaces. Szczecin: West Pomeranian University of Technology Publishing House. (in Polish).
[4] Ul-Hamid et al. (2006). Failure analysis of furnace tubes exposed to excessive temperature. Engineering Failure Analysis. 13(6), 1005-1021. DOI: 10.1016/j.engfailanal.2005.04.003.
[5] Reihani, A., Razavi, S.A., Abbasi, E. et al. (2013). Failure Analysis of welded radiant tubes made of cast heat-resisting steel. Journal of failure Analysis and Prevention. 13, 658–665. DOI: https://doi.org/10.1007/s11668-013-9741-y.
[6] Piekarski, B. (2010). Damage of heat-resistant castings in a carburizing furnace. Engineering Failure Analysis. 17(1), 143-149. DOI: 10.1016/j.engfailanal.2009.04.011.
[7] Nandwana, D., et al. (2010). Design, Finite Element analysis and optimization of HRC trays used in heat treatment process. In World Congress on Engineering 2010, June 30 - July 2, 2010 (pp. 1149-1154). London, U.K.: Newswood Limited.
[8] Sandeep, K., Ajit, K. & Mahesh, N.S. (2012). Improving productivity in a heat treatment shop for piston Pins. SASTECH Journal. 11(2), 38-46.
[9] Standard PN-EN 10295: 2004. Heat resistant steel castings.
[10] Bajwoluk, A. & Gutowski, P. (2019). Thermal stresses in the accessories of heat treatment furnaces vs cooling kinetics. Archives of Foundry Engineering. 19(3), 88-93, DOI: 10.24425/afe.2019.127146.
Go to article

Authors and Affiliations

A. Bajwoluk
1
ORCID: ORCID
P. Gutowski
1
ORCID: ORCID

  1. Mechanical Engineering Faculty, West Pomeranian University of Technology, Szczecin, Al. Piastów 19, 70-310 Szczecin, Polska

This page uses 'cookies'. Learn more