Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 33
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the article I discuss the modal version of the so‑called ‘consequence argument’ for incompatibilism. I quote and review critical remarks that predominate in the literature, and try to answer them. I show that the main strategy employed with the view to undermining the consequence argument revolves on the meanings of expressions used in it. The premises are allegedly false, the conclusion is not strong enough, and the rules are incorrect. I object to this kind of strategy and claim that the consequence argument should be assessed on its merits and declared as correct. It is a strong reason in favor of the truth of incompatibilism.
Go to article

Bibliography

Beebee H. (2013), Free Will. An Introduction, Basingstoke: Palgrave Macmillan.
Beebee H., Mele A. (2002), Humean Compatibilism, „Mind” 111, s. 201–223.
Campbell J.K. (2007), Free Will and the Necessity of the Past, „Analysis” 67, s. 105– 111.
Campbell J.K. (2010), Compatibilism and Fatalism: Reply to Loss, „Analysis” 70, s. 71–76.
Ginet C. (1966), Might We Have No Choice?, w: K. Lehrer (red.), Freedom and Determinism, New York: Random House, s. 87–104.
Grobler A. (2006), Metodologia nauk, Kraków: Aureus – Znak.
Huemer M. (2000), Van Inwagen’s Consequence Argument, „The Philosophical Review” 109, s. 525–544.
Kane R. (2007), Libertarianism, w: J.M. Fischer, R. Kane, D. Pereboom, M. Vargas, Four Views on Free Will, Oxford: Blackwell Publishing, s. 5–43.
Lewis D. (1979), Counterfactual Dependence and Time’s Arrow, „Nous” 13, s. 455– 476.
Lewis D. (1981), Are We Free to Break the Laws?, „Theoria” 3, s. 113–121.
McKay T.J., Johnson D. (1996), A Reconsideration of An Argument Against Compatibilism, „Philosophical Topics” 24, s. 113–122.
Speak D. (2012), The Consequence Argument Revisited, w: R. Kane (red.), The Oxford Handbook of Free Will, Oxford Handbooks Online, www.oxfordhandbooks.com.
Van Inwagen P. (1975), The Incompatibility of Free Will and Determinism, „Philosophical Studies” 27, s. 185–199.
Van Inwagen P. (1983), An Essay on Free Will, Oxford: Clarendon Press. Van Inwagen P. (2000), Free Will Remains a Mystery, „Philosophical Perspectives” 14, s. 1–19.
Vihvelin K. (2000), Libertarian Compatibilism, „Philosophical Perspectives” 14, s. 139–166.
Warfield T.A. (2000), Causal Determinism and Human Freedom are Incompatible: A New Argument for Incompatibilism, „Philosophical Perspectives” 14, s. 167–180.
Go to article

Authors and Affiliations

Andrzej Nowakowski
1

  1. Uniwersytet Marii Curie‑Skłodowskiej w Lublinie, Wydział Filozofii i Socjologii, Pl. M. Curie‑Skłodowskiej 4, 20‑031 Lublin
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the relation of Wittgenstein’s philosophy to externalism. Its main claim is that even though Wittgenstein often resorted to externalist arguments in his rejection of mentalism in meaning analysis, he never adopted the externalism position – neither did he agree on internalism. Wittgenstein’s philosophy is atheoretical and therapeutic; as such, it draws on grammatical elucidations of philosophical quandaries which results in the theoretical stances reaching beyond the options admissible to either externalism or internalism.
Go to article

Bibliography

Bilgrami A. (1996), Can Externalism Be Reconciled With Self‑Knowledge? [1992], w: A. Pessin, S. Goldberg (red.), The Twin Earth Chronicles. Twenty Years of Reflection on Hilary Putnam’s “The Meaning of ‘Meaning’”, London – New York: Routledge, s. 362–395.

Burge T. (2007), Individualism and the Mental [1979], w: tenże, Foundations of Mind. Philosophical Essays, vol. 2, Toronto – New York: Oxford University Press, s. 100–150.

Burge T. (2013), Individualism and Self‑Knowledge [1988], w: Cognition Through Understanding: Self‑Knowledge, Interlocution, Reasoning, Reflection: Philosophical Essays, vol. 3, Oxford: Oxford University Press, s. 55–68.

Cavell S. (2008), Sens późnej filozofii Wittgensteina, przeł. T. Zarębski, „Principia” I.

Child W. (2010), Wittgenstein’s Externalism, w: D. Whiting (red.), The Later Wittgenstein on Language, Houndmills, Basingstoke: Palgrave Macmillan, s. 63– 80.

Davidson D. (2001), Knowing One’s Own Mind [1987], w: tenże, Subjective, Intersubjective, Objective, New York – Clarendon: Oxford University Press, s. 15–38.

Glock H.‑J., Preston J.M. (1995), Externalism and First‑Person Authority, „The Monist” 78 (4), s. 515–533.

Hacker P.M.S. (1998), Wittgenstein: Meaning and Mind. Volume 3 of an Analytical Commentary on the „Philosophical Investigations”, cz. I i II, Oxford: Blackwell.

Hacker P.M.S. (2013), Wittgenstein: Comparison and Context, Oxford: Oxford University Press.

Putnam H. (1998), Wiele twarzy realizmu i inne eseje, przeł. A. Grobler, Warszawa: Wydawnictwo Naukowe PWN.

Sawyer S. (2003), Conceptual Errors and Social Externalism, „The Philosophical Quarterly” 53, s. 265–273.

Sorgiovanni B. (2020), Wittgensteinian Content‑Externalism, „European Journal of Philosophy” 28, s. 110–125.

Wikforss Å.M. (2001), Social Externalism and Conceptual Errors, „The Philosophical Quarterly” 51, s. 217–231.

Wittgenstein L. (1997), Tractatus logico‑philosophicus, przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.

Wittgenstein L. (1998), Niebieski i brązowy zeszyt, przeł. A. Lipszyc, Ł. Sommer, Warszawa: Spacja.

Wittgenstein L. (1999a), Bemerkungen über die Philosophie der Psychologie, w: tenże, Werkausgabe, Bd. 7, Frankfurt am Main: Suhrkamp.

Wittgenstein L. (1999b), Kartki, przeł. S. Lisiecka, Warszawa: Wydawnictwo KR. Wittgenstein L. (2000a), Dociekania filozoficzne, przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.

Wittgenstein L. (2000b), Uwagi o podstawach matematyki, przeł. M. Poręba, Warszawa: Wydawnictwo KR.
Go to article

Authors and Affiliations

Piotr Dehnel
1
ORCID: ORCID

  1. Dolnośląska Szkoła Wyższa, ul. Strzegomska 55, 53‑611 Wrocław
Download PDF Download RIS Download Bibtex

Abstract

In Tractatus Logico‑Philosophicus Wittgenstein referred to a relatively small number of philosophers, and Fritz Mauthner was one of them, although his work is nowadays largely forgotten. In thesis 4.0031 Wittgenstein claimed that his critique of language was quite different from Mauthner’s project. What could it mean then for contemporary discussions on the Tractatus? In this paper it is argued that for Wittgenstein it amounted to rejection of both the resolute and the materialistic interpretation of the Tractatus. On the one hand, Mauthner thought that language could not be exhaustively analyzed by semantics and logic. On the other hand, he believed that one of the greatest illusions of philosophers who investigated language was the conviction that one of the most fundamental features of language is its referential function. These are the claims that the proponents of the radical interpretation read into the Tractatus. But thesis 4.0031 shows that they are wrong. Moreover, in his critique of the referential function of language Mauthner associated states of affairs directly with brain states of a given agent. As for the representatives of the materialistic interpretation of the Tractatus, they attribute to theses 5.54–5.5422 a similar view on the relation between man and the world. Hence, thesis 4.0031 falsifies their reading, as well.
Go to article

Bibliography

Arens K. (1995), Mach und Mauthner: Der Fall eines Paradigmenwechsels, w: E. Leinfellner, H. Schleichert (red.), Fritz Mauthner: Das Werk eines Kritischen Denkers, Wien: Böhlau, s. 95–109.

Berlage A. (1994), Empfindung, Ich und Sprache um 1900: Ernst Mach, Hermann Bahr und Fritz Mauthner im Zusammenhang, Frankfurt am Main: Peter Lang.

Brentano F. (1977), Die Abkehr vom Nichtrealen, Hamburg: Meiner.

Conant J. (2009), Rozjaśnienie i nonsens u Fregego i wczesnego Wittgensteina, przeł. T. Zarębski, w: A. Crary, R. Read (red.), Wittgenstein – nowe spojrzenie, Wrocław: Wydawnictwo Naukowe Dolnośląskiej Szkoły Wyższej, s. 211–256.

Dayton E. (1976), Tractatus 5.54–5.5422, „Canadian Journal of Philosophy” 6, s. 275–283.

Dehnel P. (2014), Ludwig Wittgenstein: teoria a terapia, Warszawa: Wydawnictwo Naukowe PWN.

Diamond C. (2009a), Etyka, wyobraźnia i metoda „Traktatu” Wittgensteina, przeł. P. Mroczkiewicz, w: A. Crary, R. Read (red.), Wittgenstein – nowe spojrzenie, Wrocław: Wydawnictwo Naukowe Dolnośląskiej Szkoły Wyższej, s. 181–209.

Diamond C. (2009b), Czy Bismarck ma żuka w pudełku? Argument języka prywatnego w „Tractatus logico‑philosophicus”, przeł. M. Gusin, w: A. Crary, R. Read (red.), Wittgenstein – nowe spojrzenie, Wrocław: Wydawnictwo Naukowe Dolnośląskiej Szkoły Wyższej, s. 307–341.

Gakis D. (2012), Contextual Metaphilosophy: The Case of Wittgenstein, Amsterdam: ILLC.

Hacker P. (2009), Czy próbował to zagwizdać?, przeł. P. Dehnel, w: A. Crary, R. Read (red.), Wittgenstein – nowe spojrzenie, Wrocław: Wydawnictwo Naukowe Dolnośląskiej Szkoły Wyższej, s. 409–447.

Jacquette D. (1992/1993), Wittgenstein’s Critique of Propositional Attitudes and Russell’s Theory of Judgement, „Brentano Studien” 4, s. 193–220.

Le Rider J. (2012), Fritz Mauthner: scepticisme linguistique et modernité, Paris: Bartillat.

Machlarz A. (2006), Fritza Mauthnera krytyka języka i jej konsekwencje dla metodologii nauk o kulturze, „Przegląd Filozoficzny – Nowa Seria” 15, s. 49–66.

Mauthner F. (1901), Beiträge zu einer Kritik der Sprache, t. 1: Sprache und Psychologie, Stuttgart: J.G. Cotta’sche.

Mauthner F. (1902), Beiträge zu einer Kritik der Sprache, t. 3: Zur Grammatik und Logik, Stuttgart: J.G. Cotta’sche.

Mauthner F. (1906), Die Sprache, Frankfurt am Main: Rütten u. Loening.

Mauthner F. (1922), Fritz Mauthner, w: R. Schmidt (red.), Die Philosophie der Gegenwarten in Selbstdarstellungen, vol. 3, Leipzig: Meiner, s. 120–144.

Mauthner F. (1925), Die Drei Bilder der Welt – ein sprachkritischer Versuch, Erlangen: Verlag der Philosophischen Akademie.

McGuinness B. (2012), Two Cheers for the ‘New’ Wittgenstein?, w: J. Zalabardo (red.), Wittgenstein’s Early Philosophy, Oxford: Oxford University Press, s. 260–272.

Nájera E. (2007), Wittgenstein versus Mauthner: Two Critiques of Language, Two Mysticisms, w: H. Hrachovec, A. Pichler, J. Wang (red.), Papers of the 30th International Wittgenstein Symposium 5–11 August 2007, Kirchberg am Wechsel: ALWS, s. 160–162.

Ostrow M. (2002), Wittgenstein’s „Tractatus”. A Dialectical Interpretation, Cam- bridge: Cambridge University Press. Proops I. (2001), The New Wittgenstein. A Critique, „European Journal of Philosophy” 9, s. 375–404.

Puhl K. (1999), Subjekt und Körper. Untersuchungen zur Subjektkritik bei Wittgenstein und zur Theorie der Subjektivität, Paderborn: Mentis.

Revolledo Novoa Á. (2014), El „Tractatus” y la critica linguística de Fritz Mauthner, „Analítica” 8, s. 41–60.

Rusell B. (1984), Theory of Knowledge, w: tenże, The Collected Papers, vol. 7, London: George Allen & Unwin.

Sass L. (2017), Głębokie niepokoje. Uwagi o Wittgensteinie jako antyfilozofie, przeł. K. Rychter, „Przegląd Filozoficzny – Nowa Seria” 26, s. 7–70.

Seron D. (2021), Brentano and Mauthner on Grammatical Illusions, w: A. Dewalque, C. Gauvry, S. Richard (red.), Philosophy of Language in the Brentano School: Reassesing the Brentanian Legacy, London: Palgrave Macmillan, s. 77–94.

Weiler G. (1970), Mauthner’s Critique of Language, Cambridge: Cambridge University Press. Wittgenstein L. (2000a), Dociekania filozoficzne, przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.

Wittgenstein L. (2000b), Tractatus logico‑philosophicus [cyt. jako TLP], przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.
Go to article

Authors and Affiliations

Marek Dobrzeniecki
1
ORCID: ORCID

  1. Akademia Katolicka w Warszawie, ul. Dewajtis 3, 01‑815 Warszawa
Download PDF Download RIS Download Bibtex

Bibliography

Ajdukiewicz K. (1948), Metodologia i metanauka, „Życie Nauki” VI (31/32), s. 4–15.

Ajdukiewicz K. (2006), Obraz świat i aparatura pojęciowa, w: tenże: Język i poznanie, t. 1, Warszawa: Wydawnictwo Naukowe PWN, s. 175–195.

Bocheński J.M. (1992), Współczesne metody myślenia, Poznań: W drodze.

Brożek A. (2020), Analiza i konstrukcja. O metodach badania pojęć w Szkole Lwowsko‑Warszawskiej, Kraków: Copernicus Center Press.

Brożek A., Będkowski M., Chybińska A., Ivanyk S., Traczykowski D. (red.) (2020), Antyirracjonalizm. Metody filozoficzne w Szkole Lwowsko‑Warszawskiej, Warszawa: Semper.

Brożek A., Chybińska A., Jadacki J., Woleński J. (red.) (2016), Tradition of the Lvov‑Warsaw school: Ideas and continuations, Boston: Brill‑Rodopi.

Cappelen H., Gendler T., Hawthorne H. (red.) (2016), The Oxford Handbook of Philosophical Methodology, Oxford: Oxford University Press.

Chwal J.F. (1998), Metafilozofia Adama Mahrburga, Warszawa: Wydawnictwo IFiS PAN.

Daly C. (red.) (2015), The Palgrave Handbook of Philosophical Methods, London: Palgrave Macmillan.

Dever J. (2016), What is philosophical methodology?, w: H. Cappelen, T. Gendler, H. Hawthorne (red.), The Oxford Handbook of Philosophical Methodology, Oxford: Oxford University Press, s. 3–24.

D’Oro G., Overgaard S. (red.) (2017), The Cambridge Companion to Philosophical Methodology, Cambridge: Cambridge University Press.

Jadacki J. (2009), Polish analytical philosophy: Studies on its heritage with the appendix containing the bibliography of Polish logic from the second half of the 14th century to the first half of the 20th century, Warszawa: Semper.

Jadacki J. (2015a), Polish philosophy of the 19th and 20th centuries: Heritage studies, Warszawa: Semper. Jadacki J. (2015b), Filozofia polska XIX i XX wieku, t. 1, Warszawa: Semper.

Jadacki J. (2015c), Filozofia polska XIX i XX wieku, t. 2, Warszawa: Semper.

Jedynak A. (2017), Elzenberg i Ajdukiewicz: mosty czy mury?, „Przegląd Filozoficzny – Nowa Seria” 4 (104), s. 355–370.

Kazimierz Twardowski. Nauczyciel – uczony – obywatel (1938), przemówienia wygłoszone na akademii żałobnej urządzonej w auli uniwersytetu J[ana] K[azimierza] w dniu 30 kwietnia 1938 roku, przez Senat Akademicki, Radę Wydziału Humanistycznego Uniwersytetu Jana Kazimierza i Polskie Towarzystwo Filozoficzne, Lwów: Polskie Towarzystwo Filozoficzne.

Kleszcz R. (2013), Metoda i wartości. Metafilozofia Kazimierza Twardowskiego Warszawa: Semper.

Kleszcz R. (2020), Roman Ingarden i dyskusje metafilozoficzne, „Przegląd Filozoficzny – Nowa Seria” 4 (116), s. 103–122.

Kłoczowski J.A. (1995), Ojciec Bocheński – wspomnienia osobiste, „Przegląd Filozoficzny – Nowa Seria” 2 (14), s. 9–14.

Krajewski W. (2005), Współczesna filozofia naukowa. Metafilozofia i ontologia, Warszawa: Wydział Filozofii i Socjologii UW.

Soin M. (2017), Kryzys filozofii i zadanie krytycznego myślenia, Warszawa: Wydawnictwo IFiS PAN.

Soin M., Parszutowicz P. (red.) (2016), Filozofia 2.0. Diagnozy i strategie, Warszawa: Wydawnictwo IFiS PAN.

Szubka T. (2020), Roman Ingarden o filozofii analitycznej, „Przegląd Filozoficzny – Nowa Seria” 4 (116), s. 123–129.

Twardowski K. (1992), Autobiografia filozoficzna, „Przegląd Filozoficzny – Nowa Seria” 1 (1), s. 19–33.

Woleński J. (1985), Filozoficzna szkoła lwowsko‑warszawska, Warszawa: Państwowe Wydawnictwo Naukowe.

Wolniewicz B. (2016), Mój obraz Szkoły lwowsko‑warszawskiej, w: A. Brożek, A. Chybińska (red.), Fenomen Szkoły Lwowsko‑Warszawskiej, Lublin: Academicon, s. 13–19.

Wolniewicz B., Grygianiec M. (2005), Metafizyka i ontologia sytuacji. Rozmowa z Prof. Bogusławem Wolniewiczem, „Filozofia Nauki” 13 (3), s. 5–14.

Woźniczka M. (red.) (2011), Metafilozofia: nieporozumienie czy szansa filozofii?, Kraków: Scriptum.
Go to article

Authors and Affiliations

Alicja Chybińska
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00‑927 Warszawa

Authors and Affiliations

Błażej Gębura
1
ORCID: ORCID

  1. Katolicki Uniwersytet Lubelski Jana Pawła II, Instytut Filozofii, Al. Racławickie 14, 20‑950 Lublin
Download PDF Download RIS Download Bibtex

Bibliography

Bocheński J.M. (1994), Sto zabobonów. Krótki filozoficzny słownik zabobonów, Kraków: Philed.

Dziobkowski B. (2019), O „Rzeczach i faktach” Bogusława Wolniewicza, w: B. Wolniewicz, Rzeczy i fakty. Wstęp do pierwszej filozofii Wittgensteina, wyd. 2, Warszawa: Wydawnictwo Naukowe PWN.

Elzenberg H. (1966), Wartość i człowiek. Rozprawy z humanistyki i filozofii, Towarzystwo Naukowe w Toruniu, Toruń: Państwowe Wydawnictwo Naukowe.

Elzenberg H. (2002), Kłopot z istnieniem. Aforyzmy w porządku czasu, wyd. popr. i uzupełn., Toruń: Wydawnictwo UMK.

Frege G. (1977), Pisma semantyczne, przeł. B. Wolniewicz, Warszawa: Państwowe Wydawnictwo Naukowe.

Hołówka J., Dziobkowski B. (red.) (2017), Marksizm. Nadzieje i rozczarowania, Warszawa: Wydawnictwo Naukowe PWN.

Kowalik Ł. (2018a), Filozofia normatywna Bogusława Wolniewicza, „Przegląd Filozoficzny – Nowa Seria” 3 (107), s. 349–374.

Kowalik Ł. (2018b), Pesymizm, determinizm, konserwatyzm, „Przegląd Filozoficzny – Nowa Seria” 3 (107), s. 409–436.

Kowalik Ł. (2020a), Ontologia Wittgensteina w późnej filozofii Bogusława Wolniewi-cza, „Przegląd Filozoficzny – Nowa Seria” 3 (115), s. 163–186.

Kowalik Ł. (2020b), Świat oczami konserwatysty, „Przegląd Filozoficzny – Nowa Seria” 1 (113), s. 95–110.

Kowalik Ł. (2021), Logika religii i mistyka wiary, „Przegląd Filozoficzny – Nowa Seria” 1 (117), s. 151–178.

Norwid C. (1984), Pisma wierszem i prozą, red. J.W. Gomulicki, Warszawa: Państwowy Instytut Wydawniczy.

Sass L. (2017), Głębokie niepokoje. Uwagi o Wittgensteinie jako antyfilozofie, przeł. K. Rychter, „Przegląd Filozoficzny – Nowa Seria” 2 (102), s. 7–70.

Uhland L. (2018), Głóg hrabiego Eberharda, w: Dwa wiersze Ludwiga Uhlanda, przeł. Ł. Kowalik, „Przegląd Filozoficzny – Nowa Seria” 3 (107), s. 435–436.

Wittgenstein L. (1997), Tractatus logico‑philosophicus, przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.

Wittgenstein L. (2000), Dociekania filozoficzne, przeł. B. Wolniewicz, Warszawa: Wydawnictwo Naukowe PWN.

Wolniewicz B. (1968), Rzeczy i fakty. Wstęp do pierwszej filozofii Wittgensteina, wyd. 1, Warszawa: Państwowe Wydawnictwo Naukowe.

Wolniewicz B. (1993), Filozofia i wartości. Rozprawy i wypowiedzi, Warszawa: Wydział Filozofii i Socjologii UW.

Wolniewicz B. (1998), Filozofia i wartości II, Warszawa: Wydział Filozofii i Socjologii UW.

Wolniewicz B. (2003), Filozofia i wartości III, Warszawa: Wydział Filozofii i Socjologii UW.

Wolniewicz B. (2016a), Filozofia i wartości IV, Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.

Wolniewicz B. (2016b), Varia, w: A. Brożek, A. Chybińska, M. Grygianiec, M. Tkaczyk (red.), Myśli o języku, nauce i wartościach. Seria druga. Profesorowi Jackowi Juliuszowi Jadackiemu w siedemdziesiątą rocznicę urodzin, Warszawa: Semper, s. 79–88.

Wolniewicz B. (2021), Filozofia i wartości. „Post factum”, red. P. Okołowski, Komorów: Wydawnictwo „Antyk” Marcin Dybowski.
Go to article

Authors and Affiliations

Łukasz Kowalik
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00-927 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

The article presents the problem of shaping national identity out of individual ethnic identity in the light of Mieczysław Wallis’ intellectual biography. As a representative of the second generation of the Lvov‑Warsaw school, he belonged to the group of several 20th‑century Polish humanists of the Jewish extraction. This condition left an indelible mark in his intellectual biography. Being aware of his ethnic background, he struggled for many years against the stigma of anti‑Semitism (in the form of social depreciation and racial categorization), yet he remained strongly attached to his Polish identity. He confirmed his resolution in everyday attitudes and in his writing. Repeatedly giving proof of his civic and patriotic attitudes, he fought for the survival of the Polish identity in the duties of the soldier, and continued to perform his cultural and educational activities during his internment as a prisoner‑of‑war for the period of several years. Then, after the war, he engulfed himself in academic activity in Poland, and constructed a specific program of aestheticization of reality, intended as a form of intellectual opposition to the manifestations of abhorrent ethnic discrimination culminating in disastrous dehumanizing effects. Following the indications contained in the archivized notes on and by Wallis, the author attempts to select, analyze and interpret these biographical clues, and she highlights the philosopher’s statements that reveal his personal experiences, reflections and views relating to the issue of national affiliation and identity. They inspire hope for finding out which factors were decisive in influencing Wallis’ life and intellectual interests.
Go to article

Bibliography

Baran T. (2007), Dehumanizacja w stosunkach międzygrupowych. Czy „obcy” to też człowiek?, Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.

Białostocki J. (1983), Wspomnienie pośmiertne. Mieczysław Wallis 1895–1975, w: M. Wallis, Sztuki i znaki. Pisma semiotyczne, Warszawa: Państwowy Instytut Wydawniczy, s. 335–339.

Bolewski A., Pierzchała H. (1989), Losy polskich pracowników nauki w latach 1939– 1945. Straty osobowe, Wrocław: Zakład Narodowy im. Ossolińskich.

Brandys M. (1955), Wyprawa do oflagu, Warszawa: Państwowy Instytut Wydawniczy.

Fąfara E. (1983), Gehenna ludności żydowskiej, Warszawa: Ludowa Spółdzielnia Wydawnicza.

Jadacki J.J., Markiewicz B. (1996), Próg istnienia, Cz. 1: Zdziesiątkowane pokolenie, Warszawa: Polskie Towarzystwo Filozoficzne.

Konstańczak S. (2017), Polska XIX i XX wieku w filozoficznym zwierciadle, Kraków: Scriptum.

Kotarbiński T. (1987a), Wypowiedź na temat prawdy i na temat patriotyzmu, w: tenże, Pisma etyczne, red. P.J. Smoczyński, Wrocław: Zakład Narodowy im. Ossolińskich, s. 275–276.

Kotarbiński T. (1987b), Zgodliwe współdziałanie, w: tenże, Pisma etyczne, red. P.J. Smoczyński, Wrocław: Zakład Narodowy im. Ossolińskich, s. 257–258.

Kotarbiński T. (1993), Garść wspomnień (o filozofach poległych w pogromie ghetta), w: J.J. Jadacki, B. Markiewicz (red.), „...A mądrości zło nie przemoże”, Warszawa: Polskie Towarzystwo Filozoficzne, s. 10–11.

Leyens J.Ph., Demoulin S., Vaes J., Gaunt R., Paladino M.P. (2007), Infra-humanization: The wall of group differences, „Journal of Social Issues and Policy Review” 1, s. 139–172.

Najder Z. (1990), Semiotics and Art: The Contribution of Mieczysław Wallis (1895– 1975), w: T.A. Sebeok, J. Umiker‑Sebeok (red.), The Semiotic Web 1989 (Approaches to Semiotics), Berlin – New York: De Gruyter Mouton, s. 109–122.

Nowakowska W. (2001), Profesor Mieczysław Wallis, Sylwetki Łódzkich Uczonych, z. 59, Łódź: Łódzkie Towarzystwo Naukowe.

Ossowska M. (1983), Zdobycze fizyki współczesnej a postawy moralne, w: taż, O człowieku, moralności i nauce. Miscellanea, Warszawa: Państwowe Wydawnictwo Naukowe, s. 453–463.

Pelc J. (1977), Wspomnienia pozgonne o Mieczysławie Wallisie i Tadeuszu Wójciku, „Studia Semiotyczne” 7, s. 101–112.

Pękala T. (2004), Świat jako przedmiot estetyczny. Wprowadzenie, w: M. Wallis, Wybór pism estetycznych, Kraków: Universitas, s. IX–XIV.

Skoczyński J., Woleński J. (2010), Historia filozofii polskiej, Kraków: WAM.

Szuchta R. (2015), 1000 lat historii Żydów Polskich. Podróż przez wieki, Warszawa: Muzeum Historii Żydów Polskich „Polin”.

Toczewski A. (2009), Oflag II C Woldenberg w Dobiegniewie. Dzieje obozowej konspiracji, Dobiegniew: Urząd Miasta Zielona Góra, Muzeum Ziemi Lubuskiej.

Wallis M. (1968), Przeżycie i wartość. Pisma z estetyki i nauki o sztuce 1931–1949, Kraków: Wydawnictwo Literackie.

Wincław D. (2016), Obcy czy po prostu Inny? Wybrane etyczne aspekty dehumanizacji, „Kultura i Wartości” 19, s. 93–114.

Woleński J. (1985), Filozoficzna szkoła lwowsko‑warszawska, Warszawa: Państwowe Wydawnictwo Naukowe.

Woleński J. (2010), Żydzi w filozofii polskiej, „Studia z Filozofii Polskiej” 5, s. 13–33.

Woleński J. (2011), Logic and philosophy in the Lvov‑Warsaw School, Dordrecht – Boston – London: Springer.

Zagajewski K. (red.) (1912), Kazimierz Twardowski. Mowy i rozprawy z okresu jego działalności w Towarzystwie Nauczycieli Szkół Wyższych, Lwów: Nakładem Towarzystwa Nauczycieli Szkół Wyższych.

Zegzuła‑Nowak J. (2013), Mieczysław Wallis i Henryk Elzenberg w estetyce polskiej XX wieku. Studium porównawcze, „Edukacja Filozoficzna” 55, s. 61–80.

Zegzuła‑Nowak J. (2016), Mieczysław Wallis i Henryk Elzenberg o sztuce i moralności (na podstawie korespondencji wzajemnej), Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

Zegzuła‑Nowak J. (2017a), Moral and aesthetic considerations of humanity according to the Polish philosopher Mieczysław Wallis, „Ethics and Bioethics” 7, s. 67–73.

Zegzuła‑Nowak J. (2017b), Polemiki filozoficzne Henryka Elzenberga ze szkołą lwowsko‑warszawską, Kraków: Scriptum.

Zegzuła‑Nowak J. (2019), Echa oświeceniowe w koncepcjach szkoły lwowsko-‑warszawskiej, w: V. Gluchman (red.), Etické myslenie minulosti a súčasnosti. Etika na Slovensku a v Európe (1751–1850) / Ethical Thinking on Past and Present. Ethics in Slovakia and Europe (1751–1850), Prešov: Filozofická fakulta PU v Prešove, s. 269–283.
Go to article

Authors and Affiliations

Joanna Zegzuła-Nowak
1

  1. Uniwersytet Zielonogórski, Instytut Filozofii, Al. Wojska Polskiego 71A, 65‑762 Zielona Góra
Download PDF Download RIS Download Bibtex

Abstract

The article poses the question of how the Polish philosophy of the postwar period responded to the evil of the 20th century totalitarianism, as exemplified by atrocities committed in Kolyma and Auschwitz. The problem is analyzed by focusing on three concepts of evil developed by Polish philosophers after World War II: the realistic view (Mieczysław Krąpiec), the phenomenological‑dialogical interpretation (Józef Tischner) and the view proposed by Leszek Kołakowski. Then, the question of evil in general, and of evil at the present time, is connected to the question of the relationship between evil and conscience.
Go to article

Bibliography

Adorno T.W. (1986), Rozważania o metafizyce, w: tenże, Dialektyka negatywna, przeł. K. Krzemieniowa, Warszawa: Państwowe Wydawnictwo Naukowe, s. 507–573.

Bauman Z. (2013), Nowoczesność i Zagłada, przeł. T. Kunz, Kraków: Wydawnictwo Literackie. Jan Paweł II (2005), Pamięć i tożsamość. Rozmowy na przełomie tysiącleci, Kraków: Znak.

Kłoczowski J.A. (1987), Sceptyk i mistyk, w: Obecność. Leszkowi Kołakowskiemu w 60. rocznicę urodzin, Londyn: Aneks, s. 52–67.

Kołakowski L. (1984), Czy diabeł może być zbawiony?, w: tenże, Czy diabeł może być zbawiony i 27 innych kazań, Londyn: Aneks, s. 149–157.

Kołakowski L. (1990a), Iluzje demitologizacji, w: tenże, Cywilizacja na ławie oskarżonych, Warszawa: Res Publica, s. 215–236.

Kołakowski L. (1990b), Rozmowy z diabłem, w: tenże, Bajki różne. Opowieści biblijne. Rozmowy z diabłem, Warszawa: Państwowe Wydawnictwo „Iskry”.

Kołakowski L. (1994), Obecność mitu, Wrocław: Wydawnictwo Dolnośląskie.

Kołakowski L. (2002), Kapłan i błazen (Rozważania o teologicznym dziedzictwie współczesnego myślenia), w: tenże, Pochwała niekonsekwencji. Pisma rozproszone sprzed roku 1968, t. 2, Londyn: Puls.

Kołakowski L. (2014), Jezus ośmieszony. Esej apologetyczny i sceptyczny, przeł. D. Zańko, Kraków: Znak.

Kowalczyk S. (1995), Zło – problemem czy tajemnicą, w: tenże, Podstawy światopoglądu chrześcijańskiego, Wrocław: Wydawnictwo Wrocławskiej Księgarni Archidiecezjalnej, s. 189–209.

Krasicki J. (2002a), Rozum i zło (zamiast wstępu), w: tenże, Przeciw nicości. Eseje. Kraków: Księgarnia Akademicka, s. 9–13.

Krasicki J. (2002b), Świadek Dobra, w: tenże, Przeciw nicości. Eseje, Kraków: Księgarnia Akademicka, s. 129–144.

Krasicki J. (2002c), Zło epoki, w: tenże, Przeciw nicości. Eseje, Kraków: Księgarnia Akademicka, s. 85–89.

Krasicki J. (2011), O nagim życiu, w: tenże, Po „śmierci Boga”. Eseje eschatologiczne, Kraków: Homini, s. 167–176.

Krąpiec M.A. (1995), Dlaczego zło? Rozważania filozoficzne, Lublin: Redakcja Wydawnictw KUL.

Lehman K. (1990), Tajemnica zła, przeł. L. Balter, „Communio. Międzynarodowy Przegląd Teologiczny” 3 (57), s. 22–31.

Marszałek I. (2014), Józef Tischner i filozoficzne koncepcje zła. Czy zło jest w nas, czy między nami?, Kraków: WAM.

Morawska A. (1970), Jak to się mogło stać?, „Znak” 9 (195), s. 1174–1190.

Podsiad A. (1984), Gabriel Marcel, czyli próba chrześcijańskiego egzystencjalizmu, w: G. Marcel, Homo viator, przeł. P. Lubicz, Warszawa: Instytut Wydawniczy Pax, s. 289–316.

Różewicz T. (2017), Unde malum?, w: tenże, Wybór poezji, Wrocław: Ossolineum, s. 771–773.

Skarga B. (1993), Pytać o zło, „Znak” 3 (454), s. 4–12.

Skoczyński J. (2014), Glosy i uwagi, Kraków: Księgarnia Akademicka.

Tischner J. (1970), Schyłek chrześcijaństwa tomistycznego, „Znak” 1 (187), s. 1–20.

Tischner J. (1981), Człowiek zniewolony i sprawa wolności (Hegel – Dostojewski – Descartes), „Znak” 1–2 (319–320), s. 123–142.

Tischner J. (1987), Wokół spraw wiary i rozumu, w: M. Heller, A. Michalik, J. Życiński (red.), Filozofować w kontekście nauki, Kraków: Polskie Towarzystwo Teologiczne, s. 35–45.

Tischner J. (1992), Wiara w mrocznych czasach, „Znak” 4 (443), s. 5–16.

Tischner J. (1993a), Gabriel Marcel, w: tenże, Myślenie według wartości, Kraków: Znak, s. 168–172.

Tischner J. (1993b), Tomizm bez mitologii, w: tenże, Myślenie według wartości, Kraków: Znak, s. 306–315.

Tischner J. (1994), Wobec zła (wokół „Veritatis Splendor”), „Tygodnik Powszechny” 2 (2321).

Tischner J. (1998), Filozofia dramatu, Kraków: Znak.

Tokarski J. (2016), Obecność zła. O filozofii Leszka Kołakowskiego, Kraków: Universitas. „Znak” (1993), nr 3 (454): Zło odwieczne, zło dzisiejsze (numer monograficzny).
Go to article

Authors and Affiliations

Jan Krasicki
1
ORCID: ORCID

  1. Uniwersytet Wrocławski, Instytut Filozofii, ul. Koszarowa 3/20, 51‑149 Wrocław
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the case of non‑anthropocentric humanities, analyzed frequently by researchers of various specialties. The paper presents its specificity, main assumptions and postulates. However, the article does not aim to provide a comprehensive and exhaustive overview of all its nuances or aspects, but rather critically addresses its intellectual program. The paper is divided into four parts. Firstly, it presents the basic idea of non‑anthropocentric humanities, exposing the keen interest in it in contemporary scientific discourse. Secondly, it emphasizes the turn to materiality (orientation to things studies), which has taken place within the ‘new’ humanities, and which was caused by the feeling that the current (traditional) way of thinking about the world has come to an end. Thirdly, it shows the methodology of non‑anthropocentric humanities, which rejects the notion that man is the measure of all things. The article points out that this approach does not place man (as the creator of reality) any more in the center of philosophical reflection, as traditional humanities have done, but focuses on various types of objects (i.e. non‑human entities). In the last part – which constitutes the most comprehensive and, at the same time, the critical part of the article – an answer is offered to the question whether the project of non‑anthropocentric humanities can constitute a sensible alternative to the recognition of traditional humanities. The paper proposes a dialectical approach, which allows the post‑humanistic and humanistic perspectives to be treated complementarily, and not antagonistically.
Go to article

Bibliography

Bakke M. (2006), Nieantropocentryczna tożsamość, w: A. Gwóźdź, A. Nieracka-‑Ćwikiel (red.), Media, ciało, pamięć. O współczesnych tożsamościach kulturowych, Warszawa: Instytut im. Adama Mickiewicza, s. 45–57.

Bakke M. (2007), Między nami zwierzętami. O emocjonalnych związkach między ludźmi i innymi zwierzętami, „Teksty Drugie” 1–2, s. 222–234.

Bakke M. (2010), Bio‑transfiguracje. Sztuka i estetyka posthumanizmu, Poznań: Wydawnictwo Naukowe UAM.

Barad K. (2012), Posthumanistyczna performatywność. Ku zrozumieniu, jak materia zaczyna mieć znaczenie, przeł. J. Bednarek, w: A. Gajewska (red.), Teorie wywrotowe. Antologia przekładów, Poznań: Wydawnictwo Poznańskie, s. 323–362.

Błaszczyk M. (2020), W pułapce posthumanizmu, „Studia Philosophica Wratislavien-sia” 1, s. 149–153.

Braidotti R. (2009), Podmioty nomadyczne. Ucieleśnienie i różnica seksualna w feminizmie współczesnym, przeł. A. Derra, Warszawa: Wydawnictwa Akademickie i Profesjonalne.

Braidotti R. (2014), Po człowieku, przeł. J. Bednarek, A. Kowalczyk, Warszawa: Wydawnictwo Naukowe PWN.

Domańska E. (2006), Historie niekonwencjonalne. Refleksja o przeszłości w nowej humanistyce, Poznań: Wydawnictwo Poznańskie.

Domańska E. (2008), Humanistyka nieantropocentryczna a studia nad rzeczami, „Kultura Współczesna” 3, s. 9–21.

Domańska E., Olsen B. (2008), Wszyscy jesteśmy konstruktywistami, w: J. Kowalewski, W. Piasek, M. Śliwa (red.), Rzeczy i ludzie. Humanistyka wobec materialności, Olsztyn: Instytut Filozofii UWM, s. 83–100.

Gadamer H.G. (2000), Człowiek i język, przeł. K. Michalski, w: H.G. Gadamer, Rozum, słowo, dzieje. Szkice wybrane, przeł. M. Łukasiewicz, K. Michalski, Warszawa: Państwowy Instytut Wydawniczy.

Gadamer H.G. (2004), Prawda i metoda, przeł. B. Baran, Warszawa: Wydawnictwo Naukowe PWN.

Gajewska G. (2011), Człowiek/zwierzę/roślina/maszyna – perspektywa posthumanis-tyczna, „Studia Europaea Gnesnensia” 4, s. 225–245.

Gajewska G. (2013), O przedmiotach nacechowanych erotycznie z perspektywy studiów nad rzeczami, „Teksty Drugie” 1–2, s. 45–59.

Gajewska G. (2015), O władzy ludzi nad zwierzętami w kulturze zachodniej – perspektywa posthumanistyczna, „Studia Europaea Gnesnensia” 11, s. 213–234.

Gajewska G. (2016), Erotyka sztucznych ciał z perspektywy studiów nad rzeczami, Gniezno: Instytut Kultury Europejskiej UAM.

Haraway D. (2003), Manifest cyborgów. Nauka, technologia i feminizm socjalistyczny lat osiemdziesiątych, przeł. S. Królak, E. Majewska, „Przegląd Filozoficzno-‑Literacki” 1, s. 49–87.

Haraway D. (2008), Zwierzęta laboratoryjne i ich ludzie, przeł. A. Ostolski, „Krytyka Polityczna” 15, s. 102–116.

Heidegger M. (1999), Czym jest metafizyka? Wprowadzenie, przeł. K. Wolicki, w: M. Heidegger, Znaki drogi, przeł. S. Blandzi i in., Warszawa: Spacja, s. 313–327.

Heidegger M. (2009), Podstawowe problemy fenomenologii, przeł. B. Baran, Warszawa: Fundacja Aletheia. Heidegger M. (2010), Bycie i czas, przeł. B. Baran, Warszawa: Wydawnictwo Naukowe PWN.

James W. (2009), Pragmatyzm, przeł. W.M. Kozłowski, Warszawa: Hachette.

Jaspers K. (1995), Szyfry transcendencji, przeł. Cz. Piecuch, Toruń: Comer.

Kant I. (2001), Krytyka czystego rozumu, przeł. R. Ingarden, Kęty: Antyk.

Latour B. (1999), Pandora’s Hope. Essays on the Reality of Science Studies, Cambridge – London: Harvard University Press.

Latour B. (2009), Polityka natury. Nauki wkraczają do demokracji, przeł. A. Czarnacka, Warszawa: Wydawnictwo Krytyki Politycznej.

Latour B. (2010), Splatając na nowo to, co społeczne. Wprowadzenie do teorii aktora‑sieci, przeł. A. Derra, K. Abriszewski, Kraków: Universitas.

Lévinas E. (2002), Całość i nieskończoność, przeł. M. Kowalska, Warszawa: Wydawnictwo Naukowe PWN.

Marcel G. (1987), Dziennik metafizyczny, przeł. E. Wende, Warszawa: Instytut Wydawniczy Pax. Mehlberg H. (1934), Czas fizyczny i pozafizyczny, „Przegląd Filozoficzny” 37, s. 378–384.

Pabjan T. (2005), Czas poza‑fizyczny w filozofii Henryka Mehlberga, „Filozofia Nauki” 3, s. 71–84.
Go to article

Authors and Affiliations

Marek Błaszczyk
1
ORCID: ORCID

  1. Uniwersytet Mikołaja Kopernika w Toruniu, Instytut Literaturoznawstwa, ul. Fosa Staromiejska 3, 87‑100 Toruń
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to examine critically a common tendency which underlies the reflection of the Polish author Witold Gombrowicz and the German philosopher Martin Heidegger. In the core of this common tendency lies the reflection on the world as such. Because of the relational structure which reveals itself to man when he is placed in its center ( resp. Dasein), both Gombrowicz and Heidegger view the world as a necessary space which enables an understanding of ourselves and of everything that surrounds us. If the possibility of self‑understanding can be realized only on the basis of that world, the question about the possibility of finding ourselves in this world is essential. The world determines us, forms us and forces us to accept the resulting consequences. However, neither Gombrowicz nor Heidegger intended to reject or to destroy this form of self‑understanding. They intimated – each in his own manner – a modified way of relating to the world and to one’s own self.
Go to article

Bibliography

Bartoszyński K. (1984), „Kosmos” i antynomie, w: Z. Łapiński (red.), Gombrowicz i krytycy, Kraków: Wydawnictwo Literackie, s. 655–691.

Błoński J. (1994), „Dziennik”, czyli Gombrowicz dobrze utemperowany, w: tenże, Forma, śmiech i rzeczy ostateczne. Studia o Gombrowiczu, Kraków: Znak, s. 141– 178.

Buczyńska‑Garewicz H. (2011), Gombrowiczowskie żarty z Heideggera, „Teksty Drugie” 1–2, s. 345–353.

Cataluccio F.M. (1991), Gombrowicz filozof, przeł. K. Bielas, w: F.M. Cataluccio, J. Illg (red.), Gombrowicz filozof, Kraków: Znak, s. 5–21.

Cern K.M. (2007), Koncepcja czasu wczesnego Heideggera, Poznań: Wydawnictwo Naukowe Instytutu Filozofii UAM.

Gall A. (2011), Humanizm performatywny. Polemika z filozofią w praktyce literackiej Witolda Gombrowicza, przeł. G. Sowinski, Kraków: Universitas.

Gombrowicz W. (1986a), Kosmos, Kraków – Wrocław: Wydawnictwo Literackie.

Gombrowicz W. (1986b), Ślub, w: tenże, Dramaty, Kraków – Wrocław: Wydawnictwo Literackie, s. 89–224.

Gombrowicz W. (1987), Pamiętnik Stefana Czarnieckiego, w: tenże, Bakakaj, Kraków: Wydawnictwo Literackie.

Gombrowicz W. (1990), Testament, Warszawa: Res Publica.

Gombrowicz W. (2006), Ferdydurke, Kraków: Wydawnictwo Literackie.

Gombrowicz W. (2013), Dziennik 1953–1969, Kraków: Wydawnictwo Literackie.

Gombrowicz W. (2017), Kurs filozofii w sześć godzin i kwadrans, przeł. I. Kania, Kraków: Wydawnictwo Literackie.

Heidegger M. (2005), Bycie i czas, przeł. B. Baran, Warszawa: Wydawnictwo Naukowe PWN.

Heidegger M. (2009), Podstawowe problemy fenomenologii, przeł. B. Baran, Warszawa: Fundacja Aletheia.

Jarzębski J. (1971), Pojęcie „formy” u Gombrowicza, „Pamiętnik Literacki” LXII, z. 4, s. 69–96.

Jarzębski J. (1982), Gra w Gombrowicza, Warszawa: Państwowy Instytut Wydawniczy.

Kijowski A. (1984), Strategia Gombrowicza, w: Z. Łapiński (red.), Gombrowicz i krytycy, Kraków: Wydawnictwo Literackie, s. 429–465.

Luchte J. (2008), Heidegger’s Early Philosophy. The Phenomenology of Ecstatic Temporality, London: Continuum International Publishing Group.

Margański J. (2001), Gombrowicz, wieczny debiutant, Kraków: Wydawnictwo Literackie.

Markowski M.P. (2004), Czarny nurt. Gombrowicz, świat, literatura, Kraków: Wydawnictwo Literackie.

Michalski K. (1978), Heidegger i filozofia współczesna, Warszawa: Państwowy Instytut Wydawniczy.

Neuger L. (1999), „Kosmos” Witolda Gombrowicza: genologiczne podstawy hipotez sensowności, „Teksty Drugie” 6 (59), s. 57–70.

Pöggeler O. (2002), Droga myślowa Martina Heideggera, przeł. B. Baran, Warszawa: Czytelnik.

Rosales A. (1970), Transcendenz und Differenz, The Hague: Martinus Nijhoff.

Sanavio P. (1991), Gombrowicz: forma i rytuał, przeł. K. Bielas, F.M. Cataluccio, w: F.M. Cataluccio, J. Illg (red.), Gombrowicz filozof, Kraków: Znak, s. 25–68.

Sobota D.R. (2013), Źródła i inspiracje Heideggerowskiego pytania o bycie, t. 2, Bydgoszcz: Yakiza.

Strzelecki R. (2006), Ethos i wolność, Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.

Waśko M. (2017), Myśląc z Heideggerem – między właściwością i niewłaściwością egzystencji, „Analiza i Egzystencja” 40, s. 29–48.

Wodziński C. (1994), Heidegger i problem zła, Warszawa: Państwowy Instytut Wydawniczy.
Go to article

Authors and Affiliations

Mateusz Waśko
1
ORCID: ORCID

  1. Uniwersytet Jagielloński, Instytut Filozofii, ul. Grodzka 52, 31‑044 Kraków
Download PDF Download RIS Download Bibtex

Abstract

The analysis and assessment of the development of solar energy were carried out and it was noted that the production of solar electricity in the world has increased by more than 15% over the last year. In 2020 there are more than 37 countries with a total photovoltaic capacity of more than one GW, and the share of solar energy in total world electricity production was 8.15%. In the regional context, the largest production of electricity by solar energy sources is in Asia (at the expense of India and China) and North America (USA). The study assesses the main factors in the development of solar energy from the standpoint of environmental friendliness and stability of the electricity supply. The problem of the utilization of solar station equipment in the EU and the US is considered. According to the IPCC, IEA, Solar Power Europe, forecasting the development of solar energy in the world is considered. It is proved that the main factor in assessing the economic efficiency of solar energy production is a regional feature due to natural and climatic conditions (intensity of solar radiation). The use of solar generation is auxiliary for the operation of modern electrical networks as long as the efficiency of photovoltaic cells increases by at least 60–65%. Marginal costs of solar energy are minimal in those countries where active state support is provided. The competitiveness of solar energy is relatively low. However, from the standpoint of replacing energy fuel at a cost of USD 10 per 1 Gcal of solar energy saves 10–20 million tons of conventional fuel. Industrial production of solar electricity at modern solar power plants forms a price at the level of USD 250–450 for 1 MWh.
Go to article

Bibliography

Alawaji, S.H. 2001. Evaluation of solar energy research and its applications in Saudi Arabia – 20 years of experience. Renew. Sustain. Energy Rev. 5, pp. 59–77, DOI: 10.1016/S1364-0321(00)00006-X.
Alster et al. 2021 – Alster, G., Brown, S. and Broadbent, H. 2021. Monthly European insights – ember. Ember-climate.org. [Online] https://www.ember-climate.org [Accessed: 2021-02-05].
BNEF 2021. BNEF Pioneers 2021. [Online] https://about.bnef.com [Accessed: 2021-05-11].
Ciuła et al. 2019 – Ciuła, J., Gaska, K., Siedlarz, D. and Koval, V. 2019. Management of sewage sludge energy use with the application of bi-functional bioreactor as an element of pure production in industry. E3S Web Conf. 123, 1016, DOI: 10.1051/e3sconf/201912301016.
David et al. 2020 – David, T.M., Silva Rocha Rizol, P.M., Guerreiro Machado, M.A. and Buccieri, G.P. 2020. Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019. Heliyon 6, e04452, DOI: 10.1016/j.heliyon.2020.e04452.
ELECTRICITY 2021. ELECTRICITY. [Online] https://www.eia.gov [Accessed: 2021-05-11].
EU Market Outlook... 2020. EU Market Outlook for Solar Power, 2020–2024. [Online] https://www.solar-powereurope.org/category/reports [Accessed: 2021-05-11].
European... 2020. European Pattern Recognition Project. [Online] https://europeanpatternrecognition.eu [Accessed: 2021-05-11].
Gielen et al. 2019 – Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N. and Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50, DOI: 10.1016/j.esr.2019.01.006.
Haddad et al. 2019 – Haddad, M., Nicod, J., Mainassara, Y.B., Rabehasaina, L., Al Masry, Z. and Péra, M. 2019. Wind and solar forecasting for renewable energy system using SARIMA-based model. [In:] International Conference on Time Series and Forecasting, Gran Canaria.
Hák et al. 2019 – Hák, T., Janoušková, S. and Moldan, B. 2016. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 60, pp. 565–573, DOI: 10.1016/j.ecolind.2015.08.003.
Hayes, J. 2012. A study on the effects of solar power. Fayetteville: University of Arkansas.
Household... 2021. Household electricity prices worldwide in September 2020, by select country. [Online] https://www.statista.com [Accessed: 2021-05-11].
Hutsaliuk et al. 2020 – Hutsaliuk, O., Koval, V., Tsimoshynska, O., Koval, M. and Skyba, H. 2020. Risk Management of Forming Enterprises Integration Corporate Strategy. TEM J. 9, pp. 1514–1523, DOI: 10.18421/TEM94-26.
IRENA 2020a. Renewable Capacity Statistics 2020. [Online] https://www.irena.org/-/media/Files/IRENA/ Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf [Accessed: 2021-05-11].
IRENA 2020b. Renewable Power Generation Costs in 2019. [Online] https://irena.org/publications/2020/ Mar/Renewable-Capacity-Statistics-2020 [Accessed: 2021-05-11].
Kaczmarzewski et al. 2019 – Kaczmarzewski, S., Olczak, P. and Halbina, A. 2019. Issues of photovoltaic installation size choice for a hard coal mine. E3S Web of Conferences, DOI: 10.1051/e3s-conf/201912301014.
Kaliappan et al. 2019 – Kaliappan, K., Sankar, M., Karthikeyan, B., Vineeth, B. and Raju, V.C. 2019. Analysis of solar energy technology in leading countries. International Journal of Power Electronics and Drive Systems 10(4), 1995.
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019a. Energy Cooperation Ukraine–Poland to Strengthen Energy Security. E3S Web Conf. 132, 1009, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019b. Environmenta concept of energy security solutions of local communities based on energy logistics. 19th Internation- al Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036.
Kumar, M. 2020. Social, economic, and environmental impacts of renewable energy resources. [In:] Okedu, K.E. (ed.), Wind Solar Hybrid Renewable Energy System. IntechOpen, DOI: 10.8772/intero-pen77440.
Lewis, N.S. 2016. Research opportunities to advance solar energy utilization. Science 351(6271), pp. 62– –71, DOI: 10.1126/science.aad1920.
Majchrzak et al. 2021 – Majchrzak, K., Olczak, P., Matuszewska, D. and Wdowin, M. 2021. Economic and environmental assessment of the use of electric cars in Poland. Energy Policy Journal 24, pp. 153–168.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113, DOI: 10.18267/j.cebr.252.
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction. Energy Policy Journal 18, pp. 73–84.
Mulatu, M.A. 2017. Energy cooperation in communication of energy harvesting tags. AEU – Int. J. Electron. Commun. 71, pp. 145–151, DOI: 10.1016/j.aeue.2016.10.016.
Najmabadi, S. 2021. Texans blindsided by massive electric bills await details of Gov. Greg Abbott’s promised relief. Texas Trib. [Online] https://www.sanmarcosrecord.com [Accessed: 2021-05- -11].
Ohta, H. 2020. The Analysis of Japan’s Energy and Climate Policy from the Aspect of Anticipatory Governance. Energies 13(19), DOI: 10.3390/en13195153.
Olczak et al. 2021 – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), DOI: 10.3390/en14020499.
Owusu, P.A. and Asumadu-Sarkodie, S. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990, DOI: 10.1080/23311916.2016.1167990.
Pattanaik et al. 2020 – Pattanaik, D., Mishra, S., Khuntia, G.P., Dash, R. and Swain, S.C. 2020. An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network. Open Eng. 10, pp. 630–641, DOI: 10.1515/eng–2020-0073.
Ravirajan, P. 2017. Solar energy for sustainable development in developing countries. Ceylon Journal of Science 46(2), DOI: 10.4038/cjs.v46i2.7424.
Renewable energy 2021. [Online] https://ec.europa.eu/energy/topics/renewable-energy_enWWW [Accessed: 2021-05-11].
Shahsavari, A. and Akbari, M. 2018. Potential of solar energy in developing countries for reducing energy- related emissions. Renewable and Sustainable Energy Reviews 90, pp. 275–291, DOI: 10.1016/j.rser.2018.03.065
Solar... 2021. Solar Industry Research Data. [Online] https://www.seia.org [Accessed: 2021-02-21].
Spillias et al. 2020 – Spillias, S., Kareiva, P., Ruckelshaus, M. and McDonald-Madden, E. 2020. Renewable energy targets may undermine their sustainability. Nat. Clim. Chang. 10, pp. 974–976. DOI: 10.1038/s41558-020-00939-x.
Sustainability... 2019. Sustainability Leadership Standard for Photovoltaic Modules and Photovoltaic Inverters, 2019. Michigan. The IPCC’s reports 2021. Intergov. Panel Clim. Chang. [Online] https://www.ipcc.ch/about/preparingreports [Accessed: 2021-02-21].
Total installed... 2020. Total installed power capacity by fuel and technology 2019–2025, main case. Int. Energy Agency. [Online] https://www.iea.org/ [Accessed: 2021-02-21].
Transforming... 2015. Transforming Our World: An Agenda for Sustainable Development until 2030. United Nation. [Online] https://sustainabledevelopment.un.org [Accessed: 2021-02-21].
Tsimoshynska et al. 2021 – Tsimoshynska, O., Koval, M., Kryshtal, H., Filipishyna, L., Arsawan, W.E. and Koval, V. 2021. Investing in road construction infrastructure projects under public-private partnership in the form of concession. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu, pp. 184–192, DOI: 10.33271/nvngu/2021-2/184.
Utility-Scale 2021. First Sol. [Online] https://www.firstsolar.com [Accessed: 2021-02-21].
Verkhovna Rada of Ukraine 2020. About modification of some laws of Ukraine concerning improvement. Kyiv.
Viebahn et al. 2011 – Viebahn, P., Lechon, Y. and Trieb, F. 2011. The potential role of concentrated solar power (CSP) in Africa and Europe – A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39, pp. 4420–4430, 4421.
Wan et al. 2015 – Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J. and Hu, Z. 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1, pp. 38–46, DOI: 10.17775/CSEEJPES.2015.00046.
Wang et al. 2017 – Wang, Y., Luo, G. and Kang, H. 2017. Successes and Failures of China’s Golden-Sun Program, in: Proceedings of the 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Atlantis Press, pp. 585–606, DOI: 10.2991/iceesd-17.2017.109.
Wang et al. 2019 – Wang, Q., Chang, P., Bai, R., Liu, W., Dai, J. and Tang, Y. 2019. Mitigation strategy for duck curve in high photovoltaic penetration power system using concentrating solar power station. Energies 12(18), DOI: 10.3390/en12183521.
Weckend et al. 2016 – Weckend, S., Wade, A. and Garvin, H. 2016. End-of-life management: Solar Photovoltaic Panels. International Renewable Energy Agency.
Wróblewski et al. 2021 – Wróblewski, P., Drożdż, W., Lewicki, W. and Miązek, P. 2021. Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas. Energies 14(8), DOI: 10.3390/en14082314.
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Yevheniia Sribna
1
ORCID: ORCID
Viktor Koval
2
ORCID: ORCID
Piotr Olczak
3
ORCID: ORCID
Dmytro Bizonych
4
Dominika Matuszewska
5
ORCID: ORCID
Oleksandr Shtyrov
6

  1. National University of Water Management and Environmental Engineering, Rivne, Ukraine
  2. National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  4. Etalontechservice LLC, Kharkiv, Ukraine
  5. AGH University of Science and Technology, Kraków, Poland
  6. Petro Mohyla Black Sea National University, Mykolaiv
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes and evaluates the development of renewable energy from the standpoint of state regulation and incentives. It is noted that the global production of renewable electricity has increased by 15% over the last year. The periods of introduction of the “green tariff” as an economic stimulus for the development of solar energy, which became the starting point for the development of alternative generation in different countries, are analyzed. The role of institutional factors in the development of renewable energy, such as the free issuance of licenses for electricity generation, stimulating the creation of specialized research areas, technology development and production of relevant equipment, was observed. The necessity of taking into account the regional peculiarity in the state stimulation of the development of renewable energy is proved. The economic efficiency of the state regulation of alternative energy in time measurement per conditional unit of alternative renewable energy stations was calculated, taking the coefficient of proportionality into account. Therefore, the calculation indicates the high effectiveness of government policy in regulating energy in terms of only short-term lag (α = 1.3) and the number of stations 80 percent of full saturation relative to the basic needs of energy consumption. A separate further stage in the development of renewable energy without the introduction and expansion of the “green tariff” has been identified. This approach was introduced in Poland, which ensured the country not only the inflow of foreign investment, but also the formation of free competition among investors.
Go to article

Bibliography

Barbose, G.L. 2021. US Renewables Portfolio Standards 2021 Status Update: Early Release. Berkeley, United States: Lawrence Berkeley National Laboratory (LBNL).
Bazaluk et al. 2021a – Bazaluk, O., Havrysh, V. and Nitsenko, V. 2021a. Energy and environmental assessment of straw production for power generation. E3S Web of Conferences 228, DOI: 10.1051/e3sconf/202122801010.
Bazaluk et al. 2021b – Bazaluk, O., Havrysh, V., Fedorchuk, M. and Nitsenko, V. 2021b. Energy Assessment of Sorghum Cultivation in Southern Ukraine. Agriculture 11(8), DOI: 10.3390/agriculture11080695.
BMWi 2010. Bundesministerium für Wirtschaft und Technologie (BMWi) 2010. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin: Bundesministerium für Wirtschaft und Technologie.
Cader et al. 2021 – Cader, J., Olczak, P. and Koneczna, R. 2021. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116, DOI: 10.33223/epj/133473.
Climate Change Act 2008. [Online] https://www.legislation.gov.uk/ukpga/2008/27/contents [Accessed: 2021-09-05].
Climate Change Laws of the World 2016. 13th Five-Year Plan. [Online] https://www.climate-laws.org/geographies/china/policies/13th-five-year-plan [Accessed: 2021-09-05].
Edie Newsroom 1999. GERMANY: Shell opens solar cell factory in Europe’s ‘Solar Valley’. [Online] https://www.edie.net/news/0/GERMANY-Shell-opens-solar-cell-factory-in-Europes-Solar-Valley/1977 [Accessed: 2021-09-05].
EISA 2007. Energy Independence and Security Act of 2007. [Online] https://www.govinfo.gov/content/ pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf [Accessed: 2021-09-05].
Energy Act 2004. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2004/20/contents [Accessed: 2021-09-05].
Energy Act 2008. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2008/32/contents [Accessed: 2021-09-05].
Energy Act 2010. [Online] https://www.legislation.gov.uk/ukpga/2010/27/pdfs/ukpga_20100027_en.pdf [Accessed: 2021-09-05].
Energy Act 2013. [Online] https://www.legislation.gov.uk/ukpga/2013/32/pdfs/ukpga_20130032_en.pdf [Accessed: 2021-09-05].
Energy Act 2016. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2016/20/contents/enacted [Accessed: 2021-09-05].
EPAct 2005. Energy Policy Act of 2005, Public Law 109-58. [Online] https://www.congress.gov/109/ plaws/publ58/PLAW-109publ58.pdf [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2000. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2000 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2004. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2004 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2009. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2009 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2014. Retrieved from https://www.clearingstelle-eeg-kwkg.de/eeg2014 [Accessed: 2021-09-05].
Gestore Rete Trasmissione Nazionale 2002. Provisional Data on Operation of the Italian Power System. [Online] http://collaudo.download.terna.it/terna/0000/0124/06.PDF [Accessed: 2021-09-05].
GSE 2014. Incentivazionedellaproduzione di energiaelettrica da impianti a fontirinnovabilidiversidai fotovoltaici. [Online] https://www.gse.it [Accessed: 2021-09-05].
GSE 2021. Energy consumption. [Online] https://www.gse.it/ [Accessed: 2021-09-05].
IRENA 2015. Renewable Energy Prospects: United States of America. [Online] https://www.irena.org/publications/2015/Jan/Renewable-Energy-Prospects-United-States-of-America [Accessed: 2021-09-05].
IRENA 2020. Country Rankings. [Online] https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Country-Rankings [Accessed: 2021-09-05].
Kholiavko et al. 2020 – Kholiavko, N., Popova, L., Marych, M., Hanzhurenko, I., Koliadenko, S. and Nitsenko, V. 2020. Comprehensive methodological approach to estimating the research component influence on the information economy development. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4(178), pp. 192–199, DOI: 10.33271/nvngu/2020-4/192.
Kohler, T. 2021. Renewable Energies marketing models Poland. [Online] https://www.roedl.com/renewable-energy-consulting/markets/countries/marketing-models-poland [Accessed: 2021-09-05].
Koval et al. 2021 – Koval, V., Hrymalyuk, A., Kulish, A., Kontseva, V., Boiko, N. and Nesenenko, P. 2021. Economic policy of industrial development and investment approach to the analysis of the national economy. Estudios De Economia Aplicada 39(6), DOI: 10.25115/eea.v39i6.5263.
Koval et al. 2019 – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy cooperation Ukraine-Poland to strengthen energy security. E3S Web Conference 132, 01009, DOI: 10.1051/e3sconf/201913201009.
Labunska et al. 2017 – Labunska, Sv., Petrova, M. and Prokopishyna, O. 2017. Asset and cost management for innovation activity. Economic Annals – XXI 165(5–6), pp. 13–18, DOI: 10.21003/ea.V165-03.
Ministry of Economic Development of Italy 2018. Proposta di piano nazionaleintegrato per l’energia e il clima. [Online] https://www.mise.gov.it/images/stories/documenti/Proposta_di_Piano_Nazionale_Integrato_ per_Energia_e_il_Clima_Italiano.pdf [Accessed: 2021-09-05] (in Italian).
MOFCOM 2013. Renewable Energy Law of the People’s Republic of China. [Online] http://english.mofcom.gov.cn/article/policyrelease/Businessregulations/201312/20131200432160.shtml [Accessed: 2021-09-05].
National Development and Reform Comission 2019. [Online] https://web.archive.org/web/20190511191431/http://www.ndrc.gov.cn/gzdt/201509/t20150921_751695.html [Accessed: 2021-09-05].
National Energy Administration 2021. [Online] http://english.www.gov.cn/state_council/2014/10/01/content_ 281474991089761.htm [Accessed: 2021-09-05].
Olczak at al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. “Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138, DOI: 10.33223/epj/122482.
Olczak at al. 2021a – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021a. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), 231, DOI: 10.3390/en14010231.
Olczak et al. 2021b – Olczak, P., Przemysław, J., Kryzia, D., Matuszewska, D., Fyk, M. and Dyczko, A. 2021b. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, November 2021, pp. 4609–4622, DOI: 10.1016/j.egyr.2021.07.038.
Piper et al. 2019 – Piper, S., Cotting, A., Wilson, A., O’Reilly, J., Hlinka, M., Lehmann, J. and Hering, G. 2019. The 2020 US renewable energy outlook. [Online] https://www.spglobal.com/marketintelligence/en/news-insights/research/the-2020-us-renewable-energy-outlook [Accessed: 2021-09-05].
Pukala, R. and Petrova, M. 2019. Application of the AHP method to select an optimal source of financing innovation in the mining sector. E3S Web of Conferences 105, DOI: 10.1051/e3sconf/201910504034.
REN21 2018. A comprehensive annual overview of the state of renewable energy. [Online] https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf [Accessed: 2021-09-05].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings 2713, pp. 277–294.
Rogalski, T. 2018. A guide to support for Polish renewable energy sources following the 2018 amendments. [Online] https://www.nortonrosefulbright.com/de-de/wissen/publications/5932a770/a-guide-to-support -for-polish-renewable-energy-sources-following-the-2018-amendments [Accessed: 2021-09-05].
Tsimoshynska et al. 2021 – Tsimoshynska, O., Koval, M., Kryshtal, H., Filipishyna, L., Arsawan, W.E. and Koval, V. 2021. Investing in road construction infrastructure projects under public-private partnership in the form of concession. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 184–192, DOI: 10.33271/nvngu/2021-2/184.
Yankovyi et al. 2021 – Yankovyi, O., Koval, V., Lazorenko, L., Poberezhets, O., Novikova, M. and Gonchar, V. 2021. Modeling Sustainable Economic Development Using Production Functions. Estudios de Economia Aplicada 39(5), DOI: 10.25115/eea.v39i5.5090.
Go to article

Authors and Affiliations

Viktor Koval
1
ORCID: ORCID
Yevheniia Sribna
2
ORCID: ORCID
Sylwester Kaczmarzewski
3
ORCID: ORCID
Alla Shapovalova
4
Viktor Stupnytskyi
5

  1. National Academy of Sciences of Ukraine, Ukraine
  2. National University of Water and Environmental Engineering, Ukraine
  3. Mineral and Energy Economy Research Institute Polish Akademy of Sciences, Kraków, Poland
  4. V.I. Vernadsky Taurida National University, Ukraine
  5. Dubno Branch Higher Education Institution «Open International University of Human Development «Ukraine», Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The objective of the European Green Deal is to change Europe into the world’s first climate- -neutral continent by 2050. Therefore, European countries are developing technological solutions to increase the production of energy from renewable sources of energy. In order to universally implement energy production from renewable energy sources, it is necessary to solve the problem of energy storage. The authors discussed the issue of energy storage and renewable energy sources, reviewing applied thermal and mechanical energy storage solutions. They referred to the energy sector in Poland which is based mainly on mining activities. The method that was used in this paper is a review of thermal and mechanical energy storage solutions. In industrial practice, various solutions on energy storage are developed around the world. The authors reviewed those solutions and described the ones which currently function in practice. Hence, the authors presented the good practices of energy storage technology. Additionally, the authors conducted an analysis of statistical data on the energy sector in Poland. The authors presented data on prime energy production in Poland in 2004–2019. They described how the data has changed over time. Subsequently, they presented and interpreted data on renewable energy sources in Poland. They also showed the situation of Poland compared to other European countries in the context of the share of renewables in the final gross energy consumption.
Go to article

Bibliography

Abbas et al. 2020 – Abbas, Z., Chen, D., Li, Y., Yong, L. and Wang, R.Z. 2020. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox. Geothermics 87, 101837.
Agencja Rynku Energii SA 2020. Primary Energy Balance in 2004–2019 (Bilans Energii Pierwotnej w latach 2004–2019). Warszawa (in Polish).
Airly, 2020. Oddychaj Polsko. Raport o stanie powietrza. [Online] https://airly.org/pl/raport-jakosci-powietrza/ [Accessed: 2021-09-09].
Bartoszek et al. 2021 – Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G. and Dyczko, A. 2021. Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies 14(9), 2532.
Belu, R. 2019. Energy storage for electric grid and renewable energy application. In: Energy Storage, Grid Integration, Energy Economics, and the Environment. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 29–33.
Cabała et al. 2020 – Cabała, J., Warchulski R., Rozmus, D., Środek, D. and Szełęg, E. 2020. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (southern Poland). Minerals 10, p. 28.
Cader et al. 2021a – Cader, J., Koneczna, R. and Olczak, P. 2021a. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 14(16), p. 4811.
Cader et al. 2021b – Cader, J., Olczak, P. and Koneczna, R. 2021b. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geotherm. Energy 9, p. 3. CSO 2020. Energy from renewable sources in 2019. Warsaw.
Davies, R. 2020. Peak performance: could mountains create long-term energy storage? Power Technol. [Online] https://power.nridigital.com/future_power_technology_feb20/peak_performance_could_mountains_ create_long-term_energy_storage [Accessed: 2021-04-20].
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web Conf. 123, 01010.
Dyczko, A. and Malec, M. 2021. Innovative Concept of Production Support System for the {LW} Bogdanka Mine. {IOP} Conf. Ser. Mater. Sci. Eng. 1134, 12004.
Energy Instrat 2021. No Title. [Online] https://www.energy.instrat.pl [Accessed: 2021-03-23].
Euractive 2021. EU’s draft renewables law confirms 38–40% target for 2030. [Online] https://www.euractiv.com/section/energy/news/leak-eus-draft-renewables-law-confirms-38-40-target-for-2030/ [Accessed: 2021-05-18].
European Commission 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels.
European Environmental Agency 2021. Share of energy consumption from renewable sources in Europe. EEA. [Online] https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energyconsumption-5/assessment [Accessed: 2021-06-21].
Frankowski, J. 2020. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 207, 109525.
Gawlik, L. ed. 2013. Coal for the Polish energy sector in the perspective of 2050 – scenario analyzes (Węgiel dla polskiej energetyki w perspektywie 2050 roku – analizy scenariuszowe). Katowice: Górnicza Izba Przemysłowo-Handlowa (in Polish).
Graboś, A. and Żymanowska-Kumon, S. 2014. Counteracting low emissions in dense residential areas (Przeciwdziałanie niskiej emisji na terenach zwartej zabudowy mieszkalnej) [ed.] R. Sadlok. Bochnia: HELIOS (in Polish).
Gravitricity 2020. Gravitricity. [Online] https://gravitricity.com/ [Accessed: 2021-07-27].
Holder, M. 2020. Gravitricity to pilot £1m gravity-based energy storage system in Edinburgh. Bus. Green. [Online] https://www.businessgreen.com/news/4015015/gravitricity-pilot-gbp-gravity-energy-storage-edinburgh [Accessed: 2021-07-22].
Hunt et al. 2020 – Hunt, J.D., Zakeri, B., Falchetta, G., Nascimento, A., Wada, Y. and Riahi, K. 2020. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and longterm storage technologies. Energy 190, 116419.
Hussein et al. 2004 – Hussein, H.M.S., Ahmad, G.E. and El-Ghetany, H.H. 2004. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 45, pp. 2441–2452.
Kadar, P. 2014. Pros and Cons of the Renewable Energy Application. Acta Polytechnica Hungarica 11(4), pp. 211–224.
Kamiński, P. 2021a. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 14(1), p. 0042.
Kamiński, P. 2021b. Development of New Mean of Individual Transport for Application in Underground Coal Mines. Energies 14(7), p. 2022.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies 14(8), 2110.
Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(4), pp. 113–134.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2009. Local government responsibilities in the process of reducing low emission (Zadania samorządów lokalnych w procesie likwidacji niskiej emisji). Polityka Energetyczna 12(2.2), pp. 277–284 (in Polish).
Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, 111683.
Kopacz et al. 2020 – Kopacz, M., Kulpa, J., Galica, D. and Olczak, P. 2020. The influence of variability models for selected geological parameters on the resource base and economic efficiency measures – Example of coking coal deposit. Resour. Policy 68, 101711.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. [In:] 19th International Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132.
Kubiński, K. and Szabłowski, Ł. 2020. Dynamic model of solar heating plant with seasonal thermal energy storage. Renew. Energy 145, pp. 2025–2033.
Kwestarz, M. 2016. Thermal energy storage – types of energy storage (Magazynowanie ciepła – rodzaje magazynów). Czysta Energ. 12, pp. 29–35 (in Polish).
Mangold, D. and Deschaintre, L. 2016. Seasonal thermal energy storage. Report on state of the art and necessary further R+D. [Online] http://task45.iea-shc.org/data/sites/1/publications/IEA_SHC_Task45_ B_Report.pdf {accessed: 2021.09.09].
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web Conf. 14, p. 01021.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), p. 3404.
Matuszewska, D. and Olczak, P. 2020. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 13(6), p. 1499.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86.
Mokrzycki, E. and Gawlik, L. 2013. Strategy for the security of energy resources in Poland-renewable energy sources. [In:] Environmental Engineering IV.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assessments 47, 101496.
Olczak et al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. ”Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138.
Olczak et al. 2021a – Olczak, P., Jaśko, P., Kryzia, D., Matuszewska, D., Fyk, M.I. and Dyczko, A. 2021a. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, pp. 4609–4622.
Olczak et al. 2021b – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021b. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), p. 0231.
Olczak et al. 2021c – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021c. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), p. 0499.
Orzeł, B. 2020. Non-financial Value Creation Due to Non-financial Data Reporting Quality. Zesz. Nauk. Organ. i Zarządzanie 148, pp. 605–617.
Palka, D. and Stecuła, K. 2019. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 261, 012038.
Państwowy Instytut Geologiczny 2020. Balance of mineral deposits resources in Poland (Bilans zasobów złóż kopalin w Polsce). Warszawa: Państwowy Instytut Geologiczny (in Polish).
Paszkowski, W. and Loska, A. 2017. The use of data mining methods for the psychoacoustic assessment of noise in urban environment. Int. Multidiscip. Sci. GeoConference SGEM 17, pp. 1059–1066.
Pedchenko et al. 2018 – Pedchenko, M., Pedchenko, L., Nesterenko, T. and Dyczko, A. 2018. Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenom. 277, pp. 123–136.
Possemiers, M. 2014. Aquifer Thermal Energy Storage under different hydrochemical and hydrogeological conditions. [Online] https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1930575&context= L&vid=Lirias&search_scope=Lirias&tab=default_tab〈=en_US&fromSitemap=1 [Accessed: 2021-09-09].
Rafał, K. and Grabowski, P. 2021. Energy storage (Magazynowanie energii). Academia – Mag. Pol. Akad. Nauk, DOI: 10.24425/academiaPAN.2021.136844 34–40 (in Polish).
REHAU 2011. Underground Thermal Energy Storage. Improving efficiency through seasonal heat storage. Canada.
Schmidt et al. 2018 – Schmidt, T., Pauschinger, T., Sørensen, P.A., Snijders, A., Djebbar, R., Boulter, R. and Thornton, J. 2018. Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 149, pp. 585–594.
Soliński, J. 2004. Energy sector – world and Poland. Development 1971–2000, prospects to 2030. Statistics Poland 2019. Energia ze źródeł odnawialnych w 2018 roku. Informacje sygnalne. Statistics Poland 2020a. Energy 2020. Warszawa.
Statistics Poland 2020b. Energia ze źródeł odnawialnych w 2019 roku. Informacje sygnalne.
Stecuła, K. 2018. Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green Thinking in Mining. 18th Int. Multidiscip. Sci. Geoconference SGEM 2018, pp. 357–364.
Stecuła, K. and Brodny, J. 2017a. Perspectives on renewable energy development as alternative to conventional energy in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 717–724.
Stecuła, K. and Brodny, J. 2017b. Generating knowledge about the downtime of the machines in the example of mining enterprise. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 359–366.
Stecuła, K. and Brodny, J. 2018a. Role and meaning of coal mining in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. pp. 801–808.
Stecuła, K. and Brodny, J. 2018b. Decision-making possibilities in the field of excavated material quality shaping in terms of environmental protection, I. E. how to be greener in mining. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 243–250. Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 357–364.
Steinmann et al. 2019 – Steinmann, W.-D., Bauer, D., Jockenhöfer, H. and Johnson, M. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183, pp. 185–190.
Woźniak, J. and Pactwa, K. 2018. Responsible Mining – The Impact of the Mining Industry in Poland on the Quality of Atmospheric Air. Sustainability 10, p. 1184.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal 22(4), pp. 53–64.
Wyrwicki, G. 2004. Thermogravimetric analysis – unappreciated method for determination of rock type and quality (Analiza termograwimetryczna – niedoceniana metoda określania rodzaju i jakości kopaliny). Górnictwo Odkryw. 46, pp.120–125 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), p. 3978.
Go to article

Authors and Affiliations

Artur Dyczko
1
ORCID: ORCID
Paweł Kamiński
2
Kinga Stceuła
3
Dariusz Prostański
4
Michał Kopacz
1
ORCID: ORCID
Daniel Kowol
4
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
  3. Przedsiębiorstwo Budowy Szybów SA, Tarnowskie Góry, Poland
  4. KOMAG Institute of Mining Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the idea of combining a photovoltaic system with a heating film system to heat residential buildings. The analysis was performed for a newly built single-family house in Warsaw or its vicinity. The authors have selected the size of the photovoltaic installation, calculated the costs incurred by the user for the installation of a hybrid system, which were additionally compared to the cost of installing a gas installation (gas boiler) used for heating the building. The calculations were made for a single-family house with a usable area of 120 m2, the demand for utility energy for heating purposes in the newly built house was in the range of 10–50 kWh/m2/year. Based on the adopted parameters, the authors evaluated the economic efficiency of both investments (solutions) determining their net present values (NPV). The analysis takes the energy needed only for heating purposes into account.
NPV for a heating system with a gas boiler with an investment outlay EUR 8,000 for buildings purchased for utility energy in the amount of 20 kWh/m2/year and the price for natural gas EUR 0.04 /kWh will be EUR –10,500 (for 15 years, discount rate r = 3%). For the same thermal needs (energy required) of the building, NPV for heating films + photovoltaic (HF + PV) will amount to – EUR 8,100. Comparing the variants will get a EUR 2,400 higher NPV for HF + PV. With a utility energy demand for heating purpose of 50 kWh/m2/year and gas heating installation investment cost of EUR 7,000, the NPV for both variants will be equal for natural gas price = EUR 0.035/kWh.
Go to article

Bibliography

Chwieduk, D. 2009. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy 34(3), pp. 736–741.
Columbus Energy 2021. Photovoltaic. [Online] https://columbusenergy.pl/ [Accessed: 2021-02-15].
COM(2020) 562 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0562 [Accssessed: 2021- -05-14].
Gas boilers 2021. [Online] https://kotly.pl/kotly/ [Accessed: 2021-02-16].
Journal of Laws 2015, item 376. Ordinance of the Minister of Infrastructure and Development of February 27, 2015 On the methodology for determining the energy performance of a building or part of a building and energy performance certificates (Dz.U. 2015, poz. 376, Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. W sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej). Warszawa (in Polish).
JRC European Comission 2017. Photovoltaic Geographical Information System (PVGIS).
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy Cooperation Ukraine-Poland to Strengthen Energy Security. E3S Web of Conferences 132, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 19(5.3), pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036. Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132, DOI: 10.33223/epj/109912.
Kryzia et al. 2020 – Kryzia, D., Kopacz, M. and Kryzia, K. 2020. The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant. Energies 13(7), DOI: 10.3390/en13071567.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web of Conferences 14, 01021, DOI: 10.1051/e3sconf/ 20171401021.
Ministry of Climate 2020. Ministry of Climate and Environment 2020. Poland’s energy policy until 2040 (Polityka energetyczna Polski do 2040 r.). [Online] https://www.gov.pl/web/klimat/minister- kurtyka-polityka-energetyczna-polski-do-2040-r-udziela-odpowiedzi-na-najwazniejsze-wyzwania- stojace-przed-polska-energetyka-w-najblizszych-dziesiecioleciach [Accessed: 2021-01-21] (in Polish).
Ministry of Development 2019. Typical Reference Year (Typowy rok referencyjny). [Online] https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetyczna-budynkow/dane-do-obliczen-energetycznych-budynkow-1/ [Accessed: 2020-08-10] (in Polish).
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction (Potencjał energetyki prosumenckiej w Polsce na przykładzie mikroinstalacji fotowoltaicznych w budownictwie indywidualnym). Polityka Energetyczna – Energy Policy Journal 18(2), pp. 73–84 (in Polish).
Natural Gas Price 2021. [Online] http://www.cena-pradu.pl/gaz.html [Accessed: 2021-02-15].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings, 2713.
Szurlej et al. 2014 – Szurlej, A., Kamiński, J., Janusz, P., Iwicki, K. and Mirowski, T. 2014. Gas-fired power generation in Poland and energy security (Rozwój energetyki gazowej w Polsce a bezpieczeństwo energetyczne). Rynek Energii 6, pp. 33–38 (in Polish).
Tytko, R. 2019. Heating the building by foil and electrical matts (Ogrzewanie budynku za pomocą folii i mat elektrycznych). Aura 8, pp. 18–21 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), 3978, DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Krystian Majchrzak
1 2
Monika Pepłowska
3
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Instaway Institute, Warszawa, Poland
  3. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bangladesh is the seventh climate risky country in the world located in South Asia. Progressive economic growth, rapid industrialization and other development efforts are transforming Bangladesh towards a middle-income country. To cope up with the rapid economic growth, the energy supply needs to match energy demand. On the other hand, energy is at the heart of the solution to climate challenge as two-thirds of global greenhouse gas emissions come from the energy sector. At present, around 62% of total electricity depends on gas-fired power generation but its stock is depleting fast due to the increased rate of extraction and use. Considering the shortage of natural resources and being a country worst hit by climate change, the existing state, future prospects, renewable energy policies in Bangladesh are needed to be evaluated to make the existing energy sector more sustainable and modern. A thorough description from secondary sources of the energy sector in Bangladesh is provided in this paper with a special emphasis on the current scenario and future prospects of electricity generation, existing policy issues by using various renewable energy sources. Moreover, a comparison is made regarding the progress in renewable energy sector of Bangladesh with the countries most affected by global climate change. This comparison provides a perspective of how Bangladesh is progressing towards sustainable energy transition while facing problems due to climate change. Finally, recommendations are provided to advance the development of the existing energy sector of Bangladesh to turn it into a sustainable energy sector.
Go to article

Bibliography

Ahsan, M.M. 2020. Climate Change Adaptation-Based Strategies on Water and its Security: A Study on Dhaka and Ankara. Güvenlik Bilimleri Dergisi, vol. Özel Sayı, no. International Security Congress Special Issue, pp. 79–93, Feb. 2020, DOI: 10.28956/gbd.695924.
Bangladesh Bureau of Statistics (BBS) 2019. Report on Bangladesh Sample Vital Statictis [Online] https://web.archive.org/web/20200110115455/http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/6a40a397_6ef7_48a3_80b3_78b8d1223e3f/SVRS_Report_2018_29-05-2019(Final).pdf. [Accessed: 2021-09-08].
Baky et al. 2017 – Baky, A.H., Rahman, M.M. and Islam, A.K.M. 2017. Development of renewable energy sector in Bangladesh : Current status and future potentials. Renewable and Sustainable Energy Reviews (April 2016) 73, pp. 1184–1197, DOI: 10.1016/j.rser.2017.02.047.
Bosu, A.K. and Rafiq, M.A. 2019. Future of Renewable Energy in Bangladesh as a Potential Solution to Energy Crisis. 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), 2019, pp. 909–914, DOI: 10.1109/ICAEE48663.2019.8975473.
Canty, M.M. Climate Change in Puerto Rico. How Climate Change Affects the People of Puerto Rico. [Online] http://www.aksik.org/node/3597 [Accessed: 2021-09-08].
Climate Watch 2018. Historical GHG Emissions. [Online] https://www.climatewatchdata.org/gh-g-emissions?calculation=ABSOLUTE_VALUE&end_year=2018&regions=SAR&start_year=1990 [Accessed: 2021-09-08].
Deb et al. 2013 – Deb, A., Bhuiyan, D.M.A.M. and Nasir, A. 2013. Prospects of Solar Energy in Bangladesh. IOSR Journal of Electrical and Electronics Engineering 4(5), pp. 46–57, DOI: 10.9790/1676-0454657.
Eckstein et al. 2021 – Eckstein, D., Künzel, V. and Schäfer, L. 2021. Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000–2019. GLOBAL CLIMATE RISK INDEX 2021. [Online] https://germanwatch.org/sites/default/files/Global Climate Risk Index 2021_1. pdf [Accessed: 2021-09-08].
EIA 2018a. U.S. Energy. Information Administration 2018. Total energy production 2018 Ranking. [Online] https://www.eia.gov/international/rankings/world?pa=12&u=0&f=A&v=none&y=01%2F01%2F2018 [Accessed: 2021-09-08].
EIA 2018b. U.S. Energy. Information Administration 2018. Puerto Rico Territory Energy Profile. [Online] https://www.eia.gov/state/print.php?sid=RQ [Accessed: 2021-09-08].
EIA 2021. U.S. Energy. Information Administration 2021. Vietnam’s latest power development plan focu- ses on expanding renewable sources. [Online] https://www.eia.gov/todayinenergy/detail.php?id=48176 [Accessed: 2021-09-08].
Erakhrumen, A.A. 2014. Growing pertinence of bioenergy in formal/informal global energy schemes: Necessity for optimising awareness strategies and increased investments in renewable energy technologies. Renewable and Sustainable Energy Reviews 31, pp. 305–311, DOI: 10.1016/j.rser.2013.11.034.
General Economics Division (GED) 2020. Making Vision 2041 a Reality PERSPECTIVE PLAN OF BANGLADESH 2021–2041. [Online] http://oldweb.lged.gov.bd/UploadedDocument/UnitPublica- tion/1/1049/vision 2021-2041.pdf [Accessed: 2021-09-08].
Global data 2021. Philippines power capacity expected to grow more than twofold by 2030, says Glo- bal Data. [Online] https://www.globaldata.com/philippines-power-capacity-expected-grow-twofold-2030-says-globaldata/ [Accessed: 2021-09-08].
Halder et al. 2015 – Halder, P. K., Paulb, N., Joardderc M.U.H. and Sarker, M. 2015. Energy scarcity and potential of renewable energy in Bangladesh. Renewable and Sustainable Energy Reviews. 51, pp. 1636–1649, DOI: 10.1016/j.rser.2015.07.069.
Hasanujzaman, M. and Rimal, R.R. 2020. Bangladesh-Nepal energy cooperation; the horizon of new possibilities. The Himalayan. [Online] https://thehimalayantimes.com/business/bangladesh-nepal-energy-cooperation-the-horizon-of-new-possibilities [Accessed: 2021-09-08].
Hossain, S. and Rahman, M. 2021. Solar Energy Prospects in Bangladesh: Target and Current Status. Energy and Power Engineering 13, pp. 322–332, DOI: 10.4236/epe.2021.138022.
Hossain et al. 2019 – Hossain, S., Rahaman, M., Tasnim, I. and Mohammad, N. 2019. Optimal Energy Mix and Operation Cost in the Presence of Nuclear and Solar PV Generation. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 1–6, DOI: 10.1109/ECACE.2019.8679472.
Imam, B. 2021. Power Generation in Bangladesh: Important facts to look at. [Online] https://www.the-dailystar.net/opinion/news/power-generation-bangladesh-important-facts-look-2052261 [Accessed: 2021-09-08].
Intergovernmental Panel on Climate Change (IPCC). AR5 Synthesis Report: Climate Change 2014. [Online]. https://www.ipcc.ch/report/ar5/syr/ [Accessed: 2021-09-08].
IRENA 2021 – IRENA – International Renewable Energy Agency 2021. Renewable Energy Statistics 2021. [Online] https://www.irena.org/publications/2021/Aug/-/media/DE99E76D009042DE- 9A01F724A0CFBE9F.ashx. [Accessed: 2021-09-08].
Islam, M.R. and Beg, M.R.A. 2008. Renewable energy resources and technologies practice in Bangladesh. Renewable and Sustainable Energy Reviews 12(2), pp. 299–343, DOI: 10.1016/j.rser.2006.07.003.
Islam et al. 2014 – Islam, M.T., Shahir, S.A., Uddin, T.M.I. and Saifullah, A.Z.A. 2014. Current energy scenario and future prospect of renewable energy in Bangladesh. Renewable and Sustainable Energy Reviews 39, pp. 1074–1088, DOI: 10.1016/j.rser.2014.07.149.
Khan et al. 2015 – Khan, A.H., Zafreen, K.R., Hossain, M.M. and Islam, M. 2015. A review of current renewable energy activities in Bangladesh. 2015 International Conference on Green Energy and Technology, ICGET 2015. 2015, pp. 1–5, doi: 10.1109/ICGET.2015.7315097.
Korres et al. 2013 – Korres, N., O’Kiely, P., Benzie, J.A.H. and Jonathan, S.W. 2013. Bioenergy Production by Anaerobic Digestion: Using Agricultural Biomass and Organic Wastes.
Masud et al. 2020 – Masud, M.H., Nuruzzaman, M. Ahamed, R. and Tomal, A.N.M.A. 2020. Renewable energy in Bangladesh: current situation and future prospect. International Journal of Sustainable Energy 39(2), pp. 132–175, doi: 10.1080/14786451.2019.1659270.
Ministry of Fisheries and Livestock, Bangladesh 2016. Draft National Integrated Livestock Manure Management Policy. [Online] https://www.ccacoalition.org/en/resources/manure-management-draft-national -integrated-livestock-manure-management-policy [Accessed: 2021-09-08].
Ministry of Power, Energy and Mineral Resources (MPEMR) 2004. NATIONAL ENERGY POLICY. [Online] https://gtcl.org.bd/wp-content/uploads/2018/02/NATIONAL-ENERGY-POLICY.pdf [Accessed: 2021-09-08].
Ministry of Power Energy and Mineral Resources 2004. Private Sector Power Generation Policy of Bangladesh. Fuel (October 1996), pp. 1–10.
Ministry of Power Energy and Mineral Resources (MPEMR) 2008. Renewable Energy Policy of Bangladesh. [Online] https://policy.thinkbluedata.com/sites/default/files/REP_English.pdf [Accessed: 2021- 09-08].
Miskat et al. 2020 – Miskat, M.I., Ahmed, A., Rahman, M.S., Chowdhury, H., Chowdhury, T., Chowdhury, P., Sait, S.M. and Park, Y. 2020. An overview of the hydropower production potential in Bangladesh to meet the energy requirements. Environmental Engineering Research 26(6), 200514, doi: 10.4491/eer.2020.514.
MONREC 2019. Myanmar Climate Change Strategy (2018 – 2030). Food and Agriculture Organization of the United Nations. [Online] http://www.fao.org/faolex/results/details/en/c/LEX-FAOC 191077/#:~:text=- This%20Myanmar%20Climate%20Change%20Strategy,support%20inclusive%20and%20sustainable% 20development [Accessed: 2021-09-08].
MPMER 2016. Power System Master Plan 2016, Final Report. Power Division, Ministry of Power, Energy and Mineral Resources, Bangladesh.
MPEMR 2020. Ministry of Power, Energy and Mineral Resources Report, Fiscal Year 2019–20. [Online] https://powerdivision.gov.bd/sites/default/files/files/powerdivision.portal.gov.bd/annual_reports/7d86d53d_5ebb_408d_8839_64d1a9eea653/ANNUAL%20REPORT-%202019-2020%20.pdf [Accessed: 2021-09-08].
Mustafa, K. 2020. Pakistan’s power generation capacity increases to 35,975 MW. International The News. [Online] https://www.thenews.com.pk/print/671530-pakistan-s-power-generation-capacity-increases-to-35-975mw [Accessed: 2021-09-08].
Nguyen et al. 2021 – Nguyen, X.P., Le, N.D., Pham, V.V., Huynh, T.T., Dong, V.H. and Hoang, A.T. 2021. Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Taylor & Francis, pp. 1–13, doi: 10.1080/15567036.2021.1965264.
PSMP 2010. Power System Master Plan 2010. [Online] https://policy.asiapacificenergy.org/sites/default/files/PSMP2010_reduced.pdf [Accessed: 2021-09-08].
Roy, P. 2021. Govt scraps 10 coal power projects. [Online] https://www.thedailystar.net/frontpage/news/ govt-scraps-10-coal-power-projects-2118089 [Accessed: 2021-09-08].
Saim, M.A. and Khan, I. 2021. Problematizing solar energy in Bangladesh: Benefits, burdens, and electricity access through solar home systems in remote islands. Energy Research and Social Science, doi: 10.1016/j.erss.2021.101969.
Sajjad, M. and Rasul, M.G. 2015. Prospect of underground coal gasification in Bangladesh. Procedia Engineering 105, pp. 537–548, doi: 10.1016/j.proeng.2015.05.087.
SREDA 2021. Sustainable And Renewable Energy Development Authority. Electricity Generation Mix. [Online] http://www.renewableenergy.gov.bd/index.php?id=7 [Accessed: 2021-09-08].
Statista 2021. Annual installed power capacity in Vietnam from 2015 to 2019. [Online] https://www.statista.com/statistics/1196781/vietnam-total-installed-power-capacity/ [Accessed: 2021-09-08].
The Daily Star 2021. Current gas reserve to last 16 yrs. [Online] https://www.thedailystar.net/city/currentgas-reserve-suffice-16yrs-104212 [Accessed: 2021-09-08].
The Global Economy, Business and Economic data for 200 countries 2019. Renewable power capacity – Country rankings. [Online] https://www.theglobaleconomy.com/rankings/renewable_power_capacity/ [Accessed: 2021-09-08].
The World Bank. Haiti: Renewable Energy for All. [Online] https://projects.worldbank.org/en/projects-operations/project-detail/P156719 [Accessed: 2021-09-08].
The World Bank 2018. World Development Indicators Data. Washington, D.C.: World Bank Group 2018.
Worldometer 2021. Bangladesh Population. [Online] https://www.worldometers.info/world-population/bangladesh-population/. [Accessed: 2021-09-08].



Go to article

Authors and Affiliations

Md Moynul Ahsan
1
ORCID: ORCID
Showrov Rahman
2
ORCID: ORCID
Md. Sakib Hossain
3
ORCID: ORCID
Soad Shajid
3
ORCID: ORCID

  1. Department of Real Estate Development and Management, Ankara University, Turkey
  2. Department of Electrical and Electronics Engineering, Gazi University, Turkey
  3. Department of Mechanical and Production Engineering, Islamic University of Technology (IUT), Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

Given the importance of renewable energy as it provides alternative energy sources over the traditional fossil fuel that is environmentally friendly, clean and renewable, this research aims to explore scholarly articles and books that present and investigate the challenges and barriers facing the implementation of renewable energy sources in Libya where the social, cultural, financial and awareness aspects are an important consideration against renewable energy. This study contains a review of all relevant, peer-reviewed, and published articles from journals, websites, books, conference proceedings and bulletins. An extensive literature review was carried out with the aim of researching renewable energy in Libya. This was done to take a realistic perspective of the community and the knowledge services accessible. The review of literature has shown that further renewables energy research remains necessary as the current conditions of the energy sector in Libya need to be examined to understand the challenges and difficulties to introduce renewable energy within competent authorities and businesses are examined in accordance with their managers. This indicates the need to conduct various studies in Libya to explore the various challenges, mostly financial and technological, that face the purposeful implementation of renewable energy resources in Libya. Additionally, the level of awareness and culture perception of the use of renewable energy is an important aspect to be considered as reported as barriers affecting the implementation of renewable energy in various parts of the world.
Go to article

Bibliography

2020 Predictions for the Global Economy and Markets 2020. [Online] https://www.investopedia.com/2020-predictions-for-the-global-economy-markets-and-investors-4780156 [Accessed: 2020-10-23].
Abdullahi, D. et al. 2017. Solar Energy Development and Implementation in Nigeria: Drivers and Barriers. DOI: 10.18086/swc.2017.16.01.
Adan H. et al. 2018 – Adan, H., Fuerst, F., Kavarnou, D. and Singh, R. 2018. Me or my house? Investigating the relative importance of household and dwelling characteristics for household energy consumption. [Online] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3254320 [Accessed: 2020- 06-24].
Ahadzie, D.K. et al. 2009. Towards developing competency-based measures for project managers in mass house building projects in developing countries. Construction Management and Economics 27(1), pp. 89–102, DOI: 10.1080/01446190802621028.
Ajredi et al. 2017 – Ajredi, M.A.S., Ayedh, A.M.A. and Haron, M.S. 2017. The Relationship between Real Exchange Rate and Components of the Broader Measure of Money Supply: An Analytical Study on the Libyan Economy. Journal of Insurance and Financial Management 3(3).
Al-Hamamre, Z. et al. 2017. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews. Elsevier, 67, pp. 295–314.
Alweheshi, S. et al. 2019. Photovoltaic solar energy applications in Libya: a survey’. The 10th International Renewable Energy Congress (IREC), pp. 1–6, DOI: 10.1109/IREC.2019.8754527. [Online] https://www.researchgate.net/scientific-contributions/Shoroug-Alweheshi-2155953241 [Accessed: 2020-12- 05].
Ansari, M.F. et al. 2013. Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique. Renewable and sustainable energy reviews 27, pp. 163–174.
Armaroli, N. and Balzani, V. 2007. The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition 46(1–2), pp. 52–66.
Atadashi et al. 2012 – Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R. and Sulaiman, N.M.N. 2012. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry 19(1), pp. 14–26, DOI: 10.1016/j.jiec.2012.07.009.
Badi, I.A. et al. 2018. A grey-based assessment approach to the site selection of a desalination plant in Libya. Grey Systems: Theory and Application, DOI: 10.1108/GS-01-2018-0002.
Blanchard, C.M. 2016. Libya: Transition and US policy. Washington United States: Congressional Research Service. [Online] https://sgp.fas.org/crs/row/RL33142.pdf [Accessed: 2020-09-22].
Bolesta, A. 2018. Myanmar-China peculiar relationship: Trade, investment and the model of development. Journal of International Studies 11(2), pp. 23–36.
Bussar, C. et al. 2014. Optimal allocation and capacity of energy storage systems in a future European power system with 100% renewable energy generation. Energy Procedia 46, pp. 40–47, DOI: 10.1016/j.egypro.2014.01.156.
Capasso, M. 2020. The war and the economy: the gradual destruction of Libya. Review of African Political Economy 47, pp. 1–23.
CBL 2009. Economic Bulletin for the Fourth Quarter of 2009. Tripoli, Libya.
Central Bank of Libya 2005. [Online] https://cbl.gov.ly/en/[Accessed: 2021-02-20].
CIA 2016. Central Intelligence Agency-The World Factbook.
Collotta, M. et al. 2018.Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal research 29, pp. 12–21.
Deigaard, R. and Nielsen, P. 2018. Wind generation of waves: Energy and momentum transfer – An overview with physical discussion. Coastal Engineering 139, pp. 36–46.
Doğanalp, N. 2018. The nexus between renewable energy and sustainable development: a panel data analysi̇s for selected eu countries. Journal of Social And Humanities Sciences Research (JSHSR) 5(29), pp. 3966–3973, DOI: 10.26450/jshsr.884.
Etelawi et al. 2017 – Etelawi, A.M., Blatner, K.A. and McCluskey, J. 2017. Crude Oil and the Libyan Economy. International Journal of Economics and Finance 9(4), pp. 95–104.
Feron, S. 2016. Sustainability of off-grid photovoltaic systems for rural electrification in developing countries: A review. Sustainability 8(12), pp. 1–26, DOI: 10.3390/su8121326.
GPCEWGL 2008. The Libyan General people’s Committee for Electricity, Water and Gas. Annual Report. Tripoli – Libya.
GPCFAAL 2007. The General People’s Committee of The Financial Audit Authority. Tripoli – Libya.
He, Z.X. et al. 2018. Factors that influence renewable energy technological innovation in China: A dynamic panel approach. Sustainability 10(1), DOI: 10.3390/su10010124.
Herbert, G.M.J. and Krishnan, A.U. 2016. Quantifying environmental performance of biomass energy. Renewable and Sustainable Energy Reviews 59, pp. 292–308.
Herington, M.J. et al. 2017. Rural energy planning remains out-of-step with contemporary paradigms of energy access and development. Renewable and Sustainable Energy Reviews 67, pp. 1412–1419.
Van Horne, C. and Dutot, V. 2017. Challenges in technology transfer: an actor perspective in a quadruple helix environment. The Journal of Technology Transfer 42(2), pp. 285–301.
Jolly, W.M. et al. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications. Nature Publishing Group, 6(May), pp. 1–11, DOI: 10.1038/ncomms8537.
Kassem et al. 2020 – Kassem, Y., Çamur, H. and Aateg, R.A.F. 2020. Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libyax. Energies 13(14), p. 3708.
Khalifa et al. 2019 – Khalifa, R., Dabab, M. and Barham, H. 2019. A preliminary strategic framework for enhancing the sustainability of international technology transfer: The case of Libya. PICMET 2019 – Portland International Conference on Management of Engineering and Technology: Technology Management in the World of Intelligent Systems, Proceedings, 1–9, DOI: 10.23919/PICMET.2019.8893662.
Khalil, A. and Asheibe, A. 2015. The chances and challenges for renewable energy in Libya. The Proceedings of the Renewable Energy Conference (November 2015), pp. 1–6.
Khan, K.A. et al. 2018. Renewable energy scenario in Bangladesh. IJARII 4(5), pp. 270–279.
Khare et al. 2013 – Khare, V., Nema, S. and Baredar, P. 2013. Status of solar wind renewable energy. Renewable and Sustainable Energy Reviews 27(1), pp. 1–10.
Khare et al. 2017 – Khare, Vikas, Nema, S. and Baredar, P. 2013. Status of solar wind renewable energy in India. Renewable and Sustainable Energy Reviews 27, pp. 1–10, DOI: 10.1016/j.rser.2013.06.018.
Khojasteh et al. 2016 – Khojasteh, D., Khojasteh, D. and Kamali, R. 2016. Wave Energy Absorption by Heaving Point Absorbers at Caspian Sea. 24th Annual International Conference on Mechanical Engineering- ISME. Yazd, Iran (April). 156 157
Komoto, K. et al. 2009. Energy from the desert: Very Large scale photovoltaic systems: Socio-economic, financial, technical and environmental aspects. Energy from the Desert: Very Large Scale Photovoltaic Systems: Socio-economic, Financial, Technical and Environmental Aspects, pp. 1–190, DOI: 10.4324/9781849770064.
Kumar, D. and Katoch, S.S. 2014. Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India. Renewable and Sustainable Energy Reviews 35, pp. 101–108.
Luthra, S. et al. 2015. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and sustainable energy reviews 41, pp. 762–776.
Martinez-Manuel, L. 2021. Flux solar simulator for the development of thesis that to obtain the degree of doctor of Science (optics) Presents: Leopoldo Martínez-Manuel (April).
Mercer, N. 2016. Barriers to renewable energy development in newfoundland and labrador: a case study of wind energy applying the ‘aktesp’ framework for analysis.
Mirkouei, A. et al. 2017. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Applied Energy 206(May), pp. 1088–1101, DOI: 10.1016/j.apenergy.2017.09.001.
Mohamed, A.M.A. 2016. Investigation into the feasibility of the utilisation of renewable energy resources in Libya (Doctoral dissertation, Nottingham Trent University).
Mohamed et al. 2019 – Mohamed, A.M.A., Elabar, S.M., Shakmak, B.H.M. and Al-Habaibeh, A. 2019 Exploring the sustainable economy and energy for Libya’s future. Nottingham Trent University: Publications. [Online] http://irep.ntu.ac.uk/id/eprint/29037/ [Accessed: 2021-03-05].
Mohamed et al. 2017 – Mohamed, A.M.A., Al-Habaibeh, A. and Abdo, H. 2016. Future prospects of the renewable energy sector in Libya. Conference: Sustainable Built Environment. [In:] SBE16 Dubai Conference, Dubai, United Arab Emirates.
Mohamed, O.A. and Masood, S.H. 2018. A brief overview of solar and wind energy in Libya: Current trends and the future development. [In:] IOP Conference Series: Materials Science and Engineering 377(1), DOI: 10.1088/1757-899X/377/1/012136.
Murshed, M. 2020. Are Trade Liberalization policies aligned with Renewable Energy Transition in low and middle income countries? An Instrumental Variable approach. Renewable Energy 151, pp. 1110– –1123, DOI: 10.1016/j.renene.2019.11.106.
Nasar, M. and Elzentani, H. 2016. Smart Roads to Generate Energy in Libya: Survey. Environment & Ecology 34(3A), pp. 1088–1092.
Nengroo et al. 2018 – Nengro, S.H., Kamran, N.A., Ali, M.U., Kim, D.-H., Kim, M.-S., Hussain, A. and Kim, H.-J. 2018. Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom. Electronics 7(9), p. 177. OPEC 2016. [Online] https://www.opec.org/opec_web/en/search.jsp? [Accessed: 2020-06-27].
Otman, W. and Karlberg, E. 2007. The Libyan economy: economic diversification and international repositioning. Springer Science & Business Media, DOI: 10.1007/3-540-46463-8.
Paravantis et al. 2018 – Paravantis, J., Mihalakakou, G., Stigka, E. and Evanthie, M. 2018. Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece. Renewable Energy 123, pp. 639–651.
Patil, D. 2018. Sustainable Bio-Energy Through Bagasse Co-Generation Technology: a Pestel Analysis of Sugar Hub of India, Solapur. Journal of Emerging Technologies and Innovative Research 5(12), pp. 661–669.
Piwowar, A. and Dzikuć, M. 2019. Development of renewable energy sources in the context of threats resulting from low-altitude emissions in Rural Areas in Poland: A review. Energies 12(18), DOI: 10.3390/en12183558.158
Pueyo, A. 2018. What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Development 109, pp. 85–100.
Le Quéré, C. et al. 2017. Global_Carbon_Budget. Earth System Science Data (November).
Reddy, S. and Painuly, J.P. 2004. Diffusion of renewable energy technologies – barriers and stakeholders’ perspectives. Renewable Energy 29(9), pp. 1431–1447. Renewable energy statistics 2020. Online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title =Renewable_energy_statistics.
Seetharaman et al. 2019 – Seetharaman, A., Krishna Moorthy, M. and Nitin, P. 2019. Breaking barriers in deployment of renewable energy. Heliyon. Elsevier Ltd. 5(1), DOI: 10.1016/j.heliyon.2019.e01166.
Sharma, A.K. and Thakur, N.S. 2017. Energy situation, current status and resource potential of run of the river (RoR) large hydro power projects in Jammu and Kashmir: India. Renewable and Sustainable Energy Reviews 78, pp. 233–251.
Shibin et al. 2016 – Shibin, K.T., Gunasekaran, A., Papadopoulos, T., Dubey, R., Singh, M. and Fosso Wamba, S. 2016. Enablers and barriers of flexible green supply chain management: A total interpretive structural modeling approach. Global Journal of Flexible Systems Management 17(2), pp. 171–188.
Sindhu et al. 2016 – Sindhu, S., Nehra, V. and Luthra, S. 2016. Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach. Renewable and Sustainable Energy Reviews 62, pp. 70–88.
Solangi et al. 2019 – Solangi, Y.A., Tan, Q., Mirjat, N.H., Valasai, G.D., Khan, M.W.A. and Ikram, M. 2019. An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 7(2), pp. 1–31, DOI: 10.3390/pr7020118.
Strantzali, E. and Aravossis, K. 2016. Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews 55, pp. 885–898, DOI: 10.1016/j.rser.2015.11.021.
Suckling, J.H. and Frasier, J.T. 2015. Adoption of the paris agreement. Experimental Mechanics 8(11), pp. 513–519, DOI: 10.1007/BF02327128.
Suman, S.K. and Ahamad, J. 2018. Solar energy potential and future energy of India: an overview. International Journal of Engineering Science, p. 17575.
Suzuki et al. 2010 – Suzuki, M., Kehdy, B.O. and Jain, S. 2010. Identifying barriers for the implementation and the operation of biogas power generation projects in Southeast Asia: An analysis of clean development mechanism projects in Thailand. Economics and Management Series Working Paper, EMS–2010–20, International University of Japan, Japan.
Tomar et al. 2017 – Tomar, V., Tiwari, G. and Norton, B. 2017. Solar dryers for tropical food preservation: Thermophysics of crops, systems and components. Solar Energy 154, pp. 2–13.
Trutnevyte, E. et al. 2016. Energy scenario choices: Insights from a retrospective review of UK energy futures. Renewable and Sustainable Energy Reviews 55, pp. 326–337, DOI: 10.1016/j.rser.2015.10.067.
UNFCCC 2020. [Online] https://unfccc.int/climate-action/introduction-climate-action [Accessed: 2020-12-08]. U.S. Energy Information Administration 2019. [Online] https://www.eia.gov/ [Accessed: 2020-12-08].
Worldometers 2016a. [Online] https://www.worldometers.info/oil/libya-oil/ [Accessed: 2020-12-08].
Worldometers 2016b. [Online] https://www.worldometers.info/gas/ [Accessed: 2020-12-08].
Worldometer 2020. Libya Population. [Online] https://www.worldometers.info/world-population/libya-population/ [Accessed: 2020-12-08].
Go to article

Authors and Affiliations

Mussa Mohamed Bahour
1
ORCID: ORCID
M.F.M. Alkbir
2
Fatihhi Januddi
2
Adnan Bakri
2

  1. Business School, University Kuala Lumpur, Malaysia
  2. Advance Facilities Engineering Technology Research Cluster (AFET-RC); Facilities Maintenance Engineering Section (FAME), Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL MITEC), Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The issues of green energy and sustainable development are one of the most discussed and most important today in face of the global challenges, such as global warming, greenhouse emissions, degradation of the ecology etc. In this regard, green energy is obviously a necessary part of the energy policy of a country. Still, economic crises and instability have led to the necessity to form a sustainable economy; hence the crossing of the two mentioned policies leads to the necessity to figure out what sustainable green energy is. The issues of green energy are very important for the developing economies, which are highly limited in financial resources. The countries of Latin America are among the ones which face significant issues in this sphere. The article is devoted to the formulation of this concept and to the proof that sustainable energy development is individual for every country. The scope of the research is the Latin American region, within the years since 2000. The authors conducted a regression analysis of the GDPs of several countries, namely, Brazil, Argentina, Peru and Colombia and their green energy sectors, and formulated conclusions on sustainable energy sources in these countries. The key findings include the proof of sustainable green energy sources for every researched country and the strategies for the improvement of these countries’ renewable energy sector performance. The novelty of the article encompasses the methodology used and the concept of sustainable renewable energy.
Go to article

Bibliography

Abdulhamid, S. and Syed, A. 2019. Rise of trade protectionism: the case of US-Sino trade war. Transnational Corporations Review 11(4), pp. 279–289, DOI: 10.1080/19186444.2019.1684133.
Analysis. Problems and Perspectives in Management, 2(4). [Online] https://www.businessperspectives.org/images/pdf/applications/publishing/templates/article/assets/1034/PPM_EN_2004_04_Gouvea.pdf [Accessed: 2021-07-10].
Arias-Gaviria et al. 2019 – Arias-Gaviria, J., Carvajal-Quintero, S.X. and Arango-Aramburo, S. 2019. Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy 139, pp. 1111–1119, DOI: 10.1016/j.renene.2019.02.138.
Atkins, E. 2020. Contesting the ‘greening’ of hydropower in the Brazilian Amazon. Political Geography 80, 102179, DOI: 10.1016/j.polgeo.2020.102179.
Bakken et al. 2012 – Bakken, T.H., Sundt, H., Ruud, A. and Harby, A. 2012. Development of Small Versus Large Hydropower in Norway – Comparison of Environmental Impacts. Energy Procedia 20, pp. 185–199, DOI: 10.1016/j.egypro.2012.03.019.
Barua, A. and Samaddar, M. 2021. Brazil Monetary policy turns its gaze on inflation. [Online] https://www2.deloitte.com/us/en/insights/economy/americas/brazil-economic-outlook.html [Accessed: 2021- -07-10].
Basso, L. 2019. Brazilian energy-related climate (in) action and the challenge of deep decarbonization. Revista Brasileira de Política Internacional 62(2), DOI: 10.1590/0034-7329201900202.
Bekerman, M. and Dulcich, F. 2013. The international trade position of Argentina. Towards a process of export diversification? Cepal review 110. [Online] https://www.cepal.org/sites/default/files/publication/files/36999/RVI110BekermanDulchich_en.pdf [Accessed: 2021-07-10].
Bhandari, R. and Sessa, V. 2020. Energy in agriculture in Brazil. Revista Ciencia Agronomica 51(5), pp. 1–11, DOI: 10.5935/1806-6690.20200098.
Bnamericas 2021. Argentina begins to cancel renewable energy projects. [Online] https://www.bnamericas. com/en/features/argentina-begins-to-cancel-renewable-energy-projects [Accessed: 2021-07-10].
Brack, D. 2019. Forests and Climate Change. [Online] https://www.un.org/esa/forests/wp-content/uploads/2019/03/UNFF14-BkgdStudy-SDG13-March2019.pdf [Accessed: 2021-07-10].
Colmenares-Quintero et al. 2020 – Colmenares-Quintero, R.F., Rico-Cruz, C.J., Stansfield, K.E, Colmenares-Quintero, J.C. and Yibing L. 2020. Assessment of biofuels production in Colombia. Cogent Engineering 7(1), DOI: 10.1080/23311916.2020.1740041.
D’Almeida Martins, R. 2015. Coastal Cities and Climate Change: Urbanisation, Vulnerability and Adaptive Capacity on the Northern Coast of the São Paulo State, Brazil. [Online] https://core.ac.uk/download/ pdf/199430668.pdf [Accessed: 2021-07-10].
Dwipayana et al. 2021 – Dwipayana, Garniwa, I. and Herdiansyah, H. 2021. Sustainability Index of Solar Power Plants in Remote Areas in Indonesia. Technology and Economics of Smart Grids and Sustainable Energy 6(2), pp. 1–14, DOI: 10.1007/s40866-020-00098-0.
FAO 2021. Climate change and forests. [Online] http://www.fao.org/3/y0900e/y0900e06.htm [Accessed: 2021-07-10].
Flanders investment & trade market survey 2020. Peru’s renewable energy market. [Online] https://www.flandersinvestmentandtrade.com/export/sites/trade/files/market_studies/Energy%20industry%20 in%20Peru-2020.pdf [Accessed: 2021-07-10].
Fontana, C. and Lagutin, I. 2018. Tourist Taxes in Italy and Russia. Russian Law Journal 6(1), pp. 83–99, DOI: 10.17589/2309-8678-2018-6-1-83-99.
Gouvea, R. 2004. Challenges Facing Foreign Investors in Brazil: A Risk Analysis. Problems and Perspectives in Management 2(4). [Online] https://www.businessperspectives.org/images/pdf/applications/publishing/ templates/article/assets/1034/PPM_EN_2004_04_Gouvea.pdf [Accessed: 2021-07-10].
Gramkow, C. and Anger-Kraavi, A. 2019. Developing Green: A Case for the Brazilian Manufacturing Industry. Sustainability 11(23), 6783, DOI: 10.3390/su11236783.
Griffith-Jones, S. and Leistner, S. 2018. Mobilising capital for sustainable infrastructure: the cases of the AIIB and the NDB. [Online] https://www.die-gdi.de/uploads/media/DP__18.2018.pdf [Accessed: 2021-07-10].
Guzowski, C. and Recalde, M. 2008. Renewable energy in Argentina: Energy policy analysis and perspectives. International Journal of Hydrogen Energy 33(13), pp. 3592–3595, DOI: 10.1016/j.ijhydene.2007.11.032.
Hofsetz, K. and Silva, M.A. 2012. Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy 46, pp. 564–573, DOI: 10.1016/j.biombioe.2012.06.038.
How is rainforest loss really contributing to climate change? 2020. [Online] https://greenismything.com/2012/12/05/how-is-rainforest-loss-really-contributing-to-climate-change [Accessed: 2021-07-10].
IEA 2018. Brazil. [Online] https://www.iea.org/countries/brazil [Accessed: 2021-07-10].
IRENA 2019. Renewable Power Generation Costs in 2019. [Online] https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 [Accessed: 2021-07-10].
Karp et al. 2021 – Karp, S., Medina, J.D.C., Letti, L., Woiciechowski, A.L., de Carvalho, J.C., Schmitt, C., Penha, R.O., Kumlehn, G.S. and Soccol, C. 2021. Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining 15(3), pp. 899–912, DOI: 10.1002/ bbb.2195.
Klug et al. 2013 – Klug, M., Gamboa, N. and Lorber, K. 2013. Sustainable Development and Renewable Energy from Biomass in Peru – Overview of the Current Situation and Research with a Bench Scale Pyrolysis Reactor to Use Organic Waste for Energy Production. Journal of Sustainable Development 6(8), DOI: 10.5539/jsd.v6n8p130 .
KPMG 2019. Development of Renewable Energy in Argentina. Energy and Natural Resources. [Online] https://assets.kpmg/content/dam/kpmg/ar/pdf/development-renewable-energy-argentina-2019.pdf [Accessed: 2021-07-10].
LaMarca, K. 2011. Renewable Energy Initiatives: A Look at Argentina and Law. 26, 190, 17 LAW & BUS. REV. AM. 583. [Online] https://scholar.smu.edu/lbra/vol17/iss3/7 [Accessed: 2021-07-10].
Lamers et al. 2008 – Lamers, P., McCormick, K. and Hilbert, J.A. 2008. The emerging liquid biofuel market in Argentina: Implications for domestic demand and international trade. Energy Policy 36(4), pp. 1479–1490, DOI: 10.1016/j.enpol.2007.12.023.
Loayza et al. 2019 – Loayza, N., Villa, E. and Misas, M. 2019. Illicit activity and money laundering from an economic growth perspective: A model and an application to Colombia. Journal of Economic Behavior and Organization 159, pp. 442–487.
Lucas et al. 2020 – Lucas, H., del Río, P. and Cabeza, L.F. 2020. Stand-alone renewable energy auctions: The case of Peru. Energy for Sustainable Development 55, pp. 151–160, DOI: 10.1016/j. esd.2020.01.009.
Lopes et al. 2016 – Lopes, M.L., de Lima Paulillo, S.C., Godoy, A., Cherubin, R.A., Lorenzi, M.S, Carvalho Giometti, F.H., Bernardino, D.C., de Amorim Neto, H.B. and de Amorim, H.V. 2016. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology 47, DOI: 10.1016/j.bjm.2016.10.003.
Márquez, F.B. 2019. The presence of Chinese businesses in the world. Journal of Evolutionary Studies in Business 4(2), pp. 1–12, DOI: 10.1344/jesb2019.2.j058.
Massi, E. and Singh, J.N. 2018. Industrial policy and state-making: Brazil’s attempt at oil-based industrial development. Third World Quarterly 39(6), pp. 1133–1150, DOI: 10.1080/01436597.2018.1455144.
Melo-Becerra et al. 2020 – Melo-Becerra, L.A., Parrado-Galvis, L.M., Ramos-Forero, J.E. and Zarate- Solano, H.M. 2020. Effects of booms and oil crisis on Colombian Economy: A time-varying vector autoregressive approach. Revista Economía Del Rosario 23(1), pp. 31–63, DOI: 10.12804/revistas.urosario.edu.co/economia/a.8631.
Milaré et al. 2021 – Milaré, É., Milaré, L.T., Loures, F.R., Mattei, J.F., Artigas, P., Borges Franco, R.M., de Morais, R.J. and Advogados, M. 2021. Environmental law and practice in Brazil: overview. [Online] https://uk.practicallaw.thomsonreuters.com/w-014-7503?transitionType=Default& contextData= - (sc.Default)&firstPage=true [Accessed: 2021-07-10].
Mohtasham, J. 2015. Review Article-Renewable Energies. Energy Procedia 74, pp. 1289–1297, DOI: 10.1016/j.egypro.2015.07.774.
Mzimela et al. 2018 – Mzimela, Z, Mochane, M.J. And Motaung, T.E. 2018. Sugarcane bagasse waste management. Waste-to-Profit? (W-t-P): Value Added Products to Generate Wealth for a Sustainable Economy 1, pp. 293–302.
NDC 2020. Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC). [Online] https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Colombia%20First/NDC%20actualizada% 20de%20Colombia.pdf [Accessed: 2021-07-10] (in Spanish).
Neves, E.M.S.C. 2016. Institutions and environmental governance in Brazil: the local governments’ perspective. Revista de Economia Contemporânea 20(03), DOI: 10.1590/198055272035.
Notton et al. 2011 – Notton, G., Diaf, S. and Stoyanov, L. 2011. Hybrid Photovoltaic/Wind Energy Systems For Remote Locations. Energy Procedia 6, pp. 666–677, DOI: 10.1016/j.egypro.2011.05.076 .
Oehlmann et al. 2021 – Oehlmann, M., Glenk, K., Lloyd-Smith, P. and Meyerhoff, J. 2021. Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments. Resource and Energy Economics 65, 101240, DOI: 10.1016/j.reseneeco.2021.101240.
Quadrado et al. 2021 – Quadrado, G.P., Dillenburg, S., Goulart, E. and Barboza, E.G. 2021. Historical and geological assessment of shoreline changes at an urbanized embayed sandy system in Garopaba, Southern Brazil. Regional Studies in Marine Science 42, 101622, DOI: 10.1016/j.rsma.2021.101622.
Palacio, P. 2020. COVID-19 and the Economic Crisis in Argentina. [Online] https://www.e-ir. info/2020/07/21/covid-19-and-the-economic-crisis-in-argentina [Accessed: 2021-07-10].
Palacio-Ciro, S. and Vasco-Correa, C.A. 2020. Biofuels policy in Colombia: A reconfiguration to the sugar and palm sectors? Renewable and Sustainable Energy Reviews 134, 110316, DOI: 10.1016/j. rser.2020.110316.
Pimentel et al. 2002 – Pimentel, D., Herz, M., Glickstein, M., Zimmerman, M., Richard A., Becker, K., Evans, J., Hussain, B., Sarsfeld, R., Grosfeld, A. and Seidel, T. 2002. Renewable Energy: Current and Potential Issues. BioScience 52(12), pp. 1111–1120, DOI: 10.1641/0006-3568(2002)052[1111:RECAPI] 2.0.CO;2.
Pupo-Roncallo et al. 2020 – Pupo-Roncallo, O., Campillo, J. and Ingham, D. 2020. Renewable energy production and demand dataset for the energy system of Colombia. Data in Brief 28. 105084, DOI: 10.1016/j.dib.2019.105084.
Schaube, P. 2015. The Argentine power system: current challenges and perspectives for the development of renewable energy. AAIQ, Asociación Argentina de Ingenieros Químicos – CSPQ, pp. 1–19, DOI: 10.13140/RG.2.1.4462.5763.
The Energy Year 2014. Peru 2014–2025 energy plan released. [Online] https://theenergyyear.com/news/ peru-2014-2025-energy-plan-released/?cn-reloaded=1 [Accessed: 2021-07-10].
The Oxford Institute for Energy Studies 2014. Challenges across Brazil’s oil sector and prospects for future production. [Online] https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/10/WPM-55.pdf [Accessed: 2021-07-10].
Timilsina et al. 2013 – Timilsina, G.R, Chisari, O. and Romero, C.A. 2013. Economy-wide impacts of biofuels in Argentina. Energy Policy 55, pp. 636–647, DOI: 10.1016/j.enpol.2012.12.060.
Wainwright, T. 2016. Narconomics: How to Run a Drug Cartel. New York, NY: Public Affairs, 278 Pages.
Wane et al. 2020 – Wane, A, Cesaro, J.D., Duteurtre, G., Touré, I., Ndiaye, A., Alary, V., Juanès, X., Ickowicz, A., Ferrari, S. and Velasco, G. 2020. The economics of pastoralism in Argentina, Chad and Mongolia. Market participation and multiple livelihood strategies in a shock-prone environment. FAO Animal Production and Health Paper No. 182, Rome. FAO & CIRAD co-edition, DOI: 10.4060/cb1271en.
Williams, A. and Porter, S. 2006. Comparison of hydropower options for developing countries with regard to the environmental, social and economic aspects. Proceedings of the International Conference on Renewable Energy for Developing Countries-2006. pp. 1–17. [Online] http://files-do-not-link.udc.edu/docs/cere/Williams_Porter.pdf [Accessed: 2021-07-10].
WNN 2020. Macron stresses importance of nuclear energy for France. [Online] https://world-nuclear-news.org/Articles/Macron-stresses-importance-of-nuclear-energy-for-F [Accessed: 2021-07-10].
World Bank 2010. Peru: Overcoming the Barriers to Hydropower. Energy Sector Management Assistance Program (ESMAP) reports; Washington, DC. [Online] https://openknowledge.worldbank.org/handle/10986/17528 [Accessed: 2021-07-10].
World Resources Institute 2020. STATEMENT: Brazil Sets Weak 2030 Emission Reduction Target. [Online] https://www.wri.org/news/statement-brazil-sets-weak-2030-emission-reduction-target [Accessed: 2021-07-10].
Velasquez et al. 2020 – Velasquez, C.E., Fidéllis, B.G.L. e Estanislau, Costa, A.L. and Pereira, C. 2020. Assessment of the French nuclear energy system – A case study. Energy Strategy Reviews 30, 100513, DOI: 10.1016/j.esr.2020.100513.
Zuñiga-Collazos, A. 2015. Analysis of research and tourism development in Colombia. Espacios 36(18), p. 9.
Go to article

Authors and Affiliations

Igbal Guliev
1
ORCID: ORCID
Ekaterina Krivosheeva
1
ORCID: ORCID
Luiza Akieva
1
ORCID: ORCID
Petr Kruzhilin
1
ORCID: ORCID

  1. International Institute of Energy Policy and Diplomacy, MGIMO University, Russia
Download PDF Download RIS Download Bibtex

Abstract

This article presents an analysis of the sustainable development of generation sources in the Polish National Electric Power System (NEPS). First, the criteria for this development were formulated. The paper also discusses the current status of generation sources, operating in power plants and combined heat and power (CHP) plants of NEPS. Furthermore, it includes a prediction of power balance in NEPS, determining; predicted electricity gross use, predicted demand for peak capacity during the winter peak, predicted demand for peak capacity during the summer peak and required new capacity of centrally dispatched generation units (CDGUs) in 2025, 2030, 2035 and 2040 that would ensure NEPS operational security. Twenty prospective technologies of electricity generation and combined electricity and heat production were analyzed. These were divided into three groups: system power plants, high- and medium-capacity combined heat and power (CHP) plants, as well as small-capacity power plants and CHP plants (dispersed sources). The unit costs of electricity generation discounted for 2021 were calculated for the analyzed technologies, taking the costs of CO2 emission allowances into account. These costs include: capital costs, fuel costs, maintenance costs, operation costs and environmental costs (CO2 emission allowances). This proceeds to a proposal of a program of the sustainable development of generation sources in NEPS, which includes the desired capacity structure of power plants and CHP plants, and the optimal structure of electricity production in 2030 and 2040. The results of calculations and analyses are presented in tables and figure.
Go to article

Bibliography

ARE 2021. Statistical Information on Electricity (Informacja statystyczna o energii elektrycznej). Agencja Rynku Energii SA, Nr 6, Warszawa (in Polish).
BP 2021. BP Statistical Review of World Energy, Edition 2021. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accssed: 2021-09-17].
Directive 2005/89. Directive 2005/89/UE of the European Parliament and Council of 18 January 2006 on concerning measures to safeguarded security of electricity supply and infrastructure investment. Official Journal of the European Union, 2006, L 33/1 – L33/22.
Directive 2012/27. Directive 2012/27/UE of the European Parliament and Council of 25 October 2012 on energy efficiency. Official Journal of the European Union, 2012, L315/1 – L315/56.
KPEiK 2019. National Energy and Climate Plan 2021–2030 (Krajowy plan na rzecz energii i klimatu na lata 2021–2030). Ministerstwo Aktywów Państwowych, 2019 (in Polish).
MP 2020. Polish Nuclear Power Programme (Program polskiej energetyki jądrowej). Monitor Polski 2020, poz. 946 (in Polish).
PSE 2016. Forecast of Peak Capacity Demand Coverage in 2016–2035 (Prognoza pokrycia zapotrzebowania szczytowego na moc w latach 2016–2035). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/-/prognoza-pokrycia-zapotrzebowania-szczytowego-na-moc-w-latach-2016-2035 [Accessed: 2021-08-10] (in Polish).
PSE 2020. Development Plan of Present and Future Electricity Satisfaction Demand Coverage in 2021–2035 (Plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną na lata 2021–2030). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/ documents/20182/21595261/Dokument_glowny_PRSP_2021-2030_20200528.pdf [Accessed: 2021-08-10] (in Polish).
PEP2040 2021. Energy Policy of Poland until 2040 (Polityka energetyczna Polski do 2040 roku). MP 2021, poz. 128 (in Polish). Statistics 2019. Statistics of Polish Heat Industry 2018 (Statystyka Ciepłownictwa Polskiego 2018). Warszawa: Agencja Rynku Energii SA (in Polish).
Statistics 2020. Statistics of Polish Electric Power Industry 2019 (Statystyka Elektroenergetyki Polskiej 2019). Warszawa: Agencja Rynku Energii SA (in Polish).
URE 2020. Information about Investment Plans in New Generation Capacity in 2020–2034 (Informacja na temat planów inwestycyjnych w nowe moce wytwórcze w latach 2020–2034). Urząd Regulacji Energetyki. [Online] https://www.ure.gov.pl>download>Raport-Plany inwestycyjne w nowe moce wytwórcze latach 2020-2034 [Accessed: 2021-08-10] (in Polish).
Zaporowski, B. 2016. Sustainable development of the electricity generation sources (Zrównoważony rozwój źródeł energii elektrycznej). Polityka Energetyczna – Energy Policy Journal 19(3), pp. 35–48 (in Polish).
Zaporowski, B. 2019. Energy and economic effectiveness of prospective generation technologies for Polish electric power industry (Efektywność energetyczna i ekonomiczna perspektywicznych dla polskiej elektroenergetyki technologii wytwórczych). Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 63, część 2, pp. 87–90 (in Polish).
Go to article

Authors and Affiliations

Bolesław Zaporowski
1
ORCID: ORCID

  1. Institute of Electric Power Engineering of Poznań University of Technology, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this article is to investigate the problematic aspects of standardization of energy management systems in Russian enterprises. The main characteristics of energy management, existing standards in the field of energy management are given. To study the best practices and the effectiveness of the implementation of the energy management system in 2017, the Ministry of Energy of Russia, with the participation of the Federal State Budgetary Institution “Russian Energy Agency” the Ministry of Energy of Russia, carried out the monitoring of energy efficiency management and the implementation of energy management systems in the practice of Russian companies. The peculiarity of the introduction of energy management systems in the practice of managing Russian enterprises has been identified, which consists in the fact that it occurs based on the already implemented quality management system, environmental management, labor protection, when a lot of work has been done (document management, internal audit system, corrective actions, training, provisions providing feedback and the possibility of submitting proposals, etc.). Like any quality management system, the successful implementation of this standard depends on the involvement of all levels and functions of the organization’s management in this process, and especially on top management.
Go to article

Bibliography

Antomoshkin, A.Yu. 2017. Experience in implementing an energy management system according to the UNIDO methodology in Russia. Cast and Metallurgy 4(89), pp. 143–147.
Babenko, K.Y. 2020. Management of territorial economic development: project approach. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 135–139.
Federal Law No. 261-FZ “On energy saving and on increasing energy efficiency and on amending certain laws of the Russian Federation”. 2009. [Online] https://clck.ru/WGZc2 [Accessed: 2021-06-20].
Gorbunova, V.S. and Puzina, Ye.Yu. 2018. The effectiveness of the implementation of energy management systems in industrial companies in Russia. Transport Systems and Technologies 1, pp. 119–137.
GOST R 2008. GOST R 40.003-2008. Certification system GOST R. Register of quality systems. The procedure for certification of the quality management system for compliance with GOST R ISO 9001-2008 (ISO 9001: 2008). 2008. [Online] https://docs.cntd.ru/document/1200068716 [Accessed: 2021-06-20].
GOST R ISO 2019. GOST R ISO 19011-2003. Guidelines for auditing quality management systems and/or environmental management system. 2019. [Online] http://base.consultant.ru/cons/CGI/online.cgi?req=doc;base=EXP;n=335887 [Accessed: 2021-06-20].
Gurevich, V. and Primakova, I. 2013. Integration of energy management into the practice of managing the organization. Science and Innovation 12(26), pp. 5–7.
Ihnatyshyn, M.V. and Demian, Y.Yu. 2019. Business-consulting as a tool for balancing business resources and management decisions at enterprises. Scientific Bulletin of Mukachevo State University. Series “Economics” 2(12), pp. 62–66.
ISO 2014. ISO 50001: 2011 Energy Management Systems. Requirements and guidance for use. 2014. [Online] https://iso-management.com/wp-content/uploads/2018/09/ISO-50001-2011.pdf [Accessed: 2021-06-20].
ISO 2015. ISO 17021. Conformity assessment. Requirements for certification bodies of management systems. 2015. [Online] https://www.iso.org/obp/ui#iso:std:iso-iec:17021:-1:ed-1:v1:ru [Accessed: 2021- 06-20].
Kachynska et al. 2021 – Kachynska, N.F., Zemlyanska, O.V., Husiev, A.M., Demchuk, H.V. and Kovtun, A.I. 2021. Labour protection as a component of effective management of a modern enterprise. Scientific Bulletin of Mukachevo State University. Series “Economics” 8(1), pp. 77–85.
Kucher, L.R. and Zamrii, O.M. 2020. The role of the competitive personality of the manager in management. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 32–37.
Li, F. and Strachan, N. 2019. Take me to your leader: using socio-technical energy transitions (STET) modelling to explore the role of actors in decarbonisation pathways. Energy Research & Social Science 51, pp. 67–81.
Lyalin, A.M. and Pfayfer, N.V. 2015. Energy management standardization in Russia. University Bulletin 9, pp. 197–202.
Pareschi et al. 2020 – Pareschi, G., Küng, L., Georges, G. and Boulouchos, K. 2020. Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data. Applied Energy 275, DOI: 10.1016/j.apenergy.2020.115318.
Pilipenko, N.V. and Gladskikh, D.A. 2014. Determination of the heat losses of buildings and structures by solving inverse heat conduction problems measurement techniques. Springer New York Consultants Bureau 2(57), pp. 181–186.
Redko, K.YU. and Furs, O.S. 2020. The current situation and world trends of green energy development. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 55–60.
Somma et al. 2019 – Somma, M.D., Graditi, G. and Siano, P. 2019. Optimal bidding strategy for a DER aggregator in the day-ahead market in the presence of demand flexibility. IEEE Transactions on Industrial Electronics 66(2), pp. 1509–1519.
State information system in the field of energy conservation and energy efficiency. 2019. [Online] https://gisee.ru/law/international/47502/ [Accessed: 2021-06-20].
Weiss et al. 2019 – Weiss, O., Pareschi, G., Schwery, O., Bolla, M., Georges, G. and Boulouchos, K. 2019. Long-term scheduling model of Swiss hydropower. 16th International Conference on the European Energy Market (EEM) 1, DOI: 10.1109/EEM.2019.8916260.
Weiss et al. 2021 – Weiss, O., Pareschi, G., Georges, G. and Boulouchos, K. 2021. The Swiss energy transition: Policies to address the Energy Trilemma. Energy Policy 148, DOI: 10.1016/j.enpol.2020.111926.
Go to article

Authors and Affiliations

Ramilya Savchuk
1
Alexandr Cherkasov
2
Pavel Kondratiev
1
Semen Matskepladze
1

  1. Department of Quality Management, Russian University of Transport, Russia
  2. Department of Transport Construction in Extreme Conditions, Russian University of Transport, Russia
Download PDF Download RIS Download Bibtex

Abstract

In the early 21st century, the USD 64,000 Question has been whether China is actually integrating into the liberal world order. In this paper I concentrate on one segment of that order: the oil market order. I question the argument that in the present century the oil market order has moved away from being “liberal capitalist” towards becoming “state-capitalist” as a consequence of the rise of China and Chinese preferences. I argue that China has neither changed nor has had the power to change the international oil market order. To demonstrate this, I evaluate China’s behavior towards the three pillars of the liberal oil market order. The first pillar is the United States’ role as the underwriter of the global oil supply. The US guarantees oil security mainly through its military presence in the Persian Gulf, the most important region for oil exports. The US also guarantees the security of sea lines of communication. The second pillar is the ownership structure of the oil industry, where state-owned and privately-owned companies coexist. The third pillar is the currency of the oil trade (the US dollar) and its market-driven pricing system. It replaced the system of OPEC-administered prices that existed between 1973 and 1988. Pricing power moved away from OPEC to the so-called “market”. In the period 2000–2020, China did not challenge any of those three pillars. China may be a mercantilist power, but in the first two decades of the 21st century it remained within the liberal oil market order.
Go to article

Bibliography

Adelman, M.A. 1984. International Oil Agreements. The Energy Journal 5(3), pp. 1–9.
Anderlini, J. 2009. China to Deploy Foreign Reserves. Financial Times 21 July. [Online] http://www.ft.com/cms/s/0/b576ec86-761e-11de-9e59-00144feabdc0.html?nclick_check=1. [Accessed: 2021-07-07].
BBC 2012. China buying oil from Iran with yuan. 8 May. [Online] https://www.bbc.com/news/busi-ness-17988142. [Accessed: 2021-07-07].
Bossley, L. 2018. There Can(not) be Only One. OIES Forum (113), pp. 15–17.
BP 2020. Statistical Review. [Online] https://www.bp.com/content/dam/bp/business-sites/en/global/corpo-rate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf. [Accessed: 2021- -07-07].
Bremmer, I. and Johnston, R. 2009. The Rise and Fall of Resource Nationalism. Survival 51(2), pp. 149–158, DOI: 10.1080/00396330902860884.
Bremmer, I. 2009. State Capitalism Comes of Age. The End of the Free Market? Foreign Affairs 88(3), pp. 40–55.
Bromley, S. 1991. American hegemony and world oil. University Park: Penn State Press, 316 pp.
Buckley et al. 2007 – Buckley, P.J., Clegg, L.J., Cross, A.R., Liu, X., Voss, H. and Zheng, P. 2007. The determinants of Chinese outward foreign direct investment. Journal of International Business Studies 38(4), pp. 499–518.
Carter, J. 1980. Address by President Carter on the State of the Union Before a Joint Session of Congress. 23 January. [Online] https://history.state.gov/historicaldocuments/frus1977-80v01/d138. [Accessed: 2021-07-07].
Chalmers, A.W. and Mocker, S.T. 2017. The end of exceptionalism? Explaining Chinese National Oil Companies’ overseas investments. Review of International Political Economy 24(1), pp. 119–143.
Christoffersen, G. 2016. The Role of China in Global Energy Governance. China Perspectives (2), pp. 15–24.
Claes, D.H. 2018. The Politics of Oil Controlling Resources. Governing Markets and Creating Political Conflicts. Cheltenham: Edward Elgar Publishing, 296 pp.
Crane et al. 2009 – Crane, K., Goldthau, A., Toman, M., Light, T., Johnson, S.E., Nader, A., Rabasa, A. and Dogo, H. 2009. Imported Oil and U.S. National Security. Santa Monica, Arlington, Pittsburgh: RAND Corporation, 126 pp.
Cunningham, F.S. 2020. The Maritime Rung on the Escalation Ladder: Naval Blockades in a US-China Conflict. Security Studies 29(4), pp. 730–768, DOI: 10.1080/09636412.2020.1811462.
Dannreuther, R. 2015. Energy security and shifting modes of governance. International Politics 52(4), pp. 466–483, DOI: 10.1057/ip.2015.4.
Daojiong, Z. 2006. China’s Energy Security: Domestic and International Issues. Survival 48(1), pp. 179– –190, DOI: 10.1080/00396330600594322.
de Graaff, N. 2014. Global networks and the two faces of Chinese national oil companies. Perspectives on Global Development and Technology 13(5–6), pp. 539–563. [Online] https://doi.org/10.1163/15691497-12341317 [Accessed: 2021-05-09].
Down, E.S. 2007. The Fact and Fiction of Sino-African Energy Relations. China Security 3(2), pp. 42–68.
Ebel, R.E. 2009. Energy and Geopolitics in China. Mixing Oil and Politics. CSIS Report. [Online] https://csis-website-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/091116_Ebel_Energy- GeoPolChina_Web.pdf. [Accessed: 2021-07-07].
Economy, E.C. and Levi, M. 2014. All Means Necessary: How China’s Resource Quest is Changing the World. Oxford: Oxford University Press, 296 pp.
EIA 2020. China. [Online] https://www.eia.gov/international/analysis/country/CHN. [Accessed: 2021-07- -07].
Eichengreen et al. 2014 – Eichengreen, B., Chiţu, L. and Mehl, A. 2014. Network effects, homoge-neous goods and international currency choice: new evidence on oil markets from an older era. ECB Working Paper Series No. 1651.
Erickson, A. and Goldstein, L. 2009. Gunboats for China’s New ‘Grand Canals’? Probing the Intersection of Beijing’s Naval and Oil Security Policies. Naval War College Review 62(2), pp. 43–76.
Everington, K. 2020. Xi tells China’s marines to ‘prepare for war’. Taiwan News 14 October. [Online] https://www.taiwannews.com.tw/en/news/4029930. [Accessed: 2021-07-07].
Fattouh, B. 2011. An Anatomy of the Crude Oil Pricing System. Oxford: OIES, 83 pp.
Garlick, J. 2018. Deconstructing the China–Pakistan Economic Corridor: Pipe Dreams Versus Geopolitical Realities. Journal of Contemporary China 27(112), pp. 519–533, DOI: 10.1080/10670564.2018.1433483.
Glaser, Ch. L. 2013. How Oil Influences U.S. National Security. International Security 38(2), pp. 112–146.
Hiim, S.H. and Stenslie, S. 2019. China’s Realism in the Middle East. Survival 61(6), pp. 153–166, DOI: 10.1080/00396338.2019.1688578.
Hook, L. 2012. Shanghai to launch crude futures contract. Financial Times. 9 February. [Online]. https://www.ft.com/content/b2c6857c-5326-11e1-8aa1-00144feabdc0. [Accessed: 2021-07-07].
Hughes, L. and Long, A. 2015. Is There an Oil Weapon? Security Implications of Changes in the Structure of the International Oil Market. International Security 39(3), pp. 152–189, DOI: 10.1162/ISEC_a_00188.
IEA 2020a. The Oil and Gas Industry in Energy Transitions Insights from IEA analysis. [Online] https://iea.blob.core.windows.net/assets/4315f4ed-5cb2-4264-b0ee-2054fd34c118/The_Oil_and_Gas_Indu- stry_in_Energy_Transitions.pdf [Accessed: 2021-07-07].
IEA 2020b. US tight oil production, investment and free cash flow, 2010–2020. [Online] https://www.iea.org/data-and-statistics/charts/us-tight-oil-production-investment-and-free-cash-flow-2010-2020 [Accessed: 2021-07-07].
Ikenberry, G.J. 2008. The Rise of China and the Future of the West: Can the Liberal System Survive? Foreign Affairs 87(1), pp. 23–37.
Imsirovic, A. 2020. China and Asian oil benchmarks: Where next? OIES Forum (125), pp. 33–36.
Jiang, J. and Sinton, J. 2011. Overseas Investments By Chinese National Oil Companies. Assessing the drivers and impacts. Paris: IEA, 52 pp.
Jiang, J. and Ding, Ch. 2014. Update on Overseas Investments by China’s National Oil Companies. Achievements and Challenges since 2011. Paris: IEA, 49 pp.
Johnston, A.I. 2019. China in a World of Orders: Rethinking Compliance and Challenge in Beijing’s International Relations. International Security 44(2), pp. 9–60, DOI: 10.1162/isec_a_00360.
Kamel, M. and Wang, H. 2019. Petro-RMB? The oil trade and the internationalization of the renminbi. International Affairs 95(5), pp. 1131–1148, DOI: 10.1093/ia/iiz169.
Kelanic, R.A. 2016. The Petroleum Paradox: Oil, Coercive Vulnerability, and Great Power Behavior. Security Studies 25(2), pp. 181–213, DOI: 10.1080/09636412.2016.1171966.
Kennedy, A.B. 2015. China and the Free‐Rider Problem: Exploring the Case of Energy Security. Political Science Quarterly 130 (1), pp. 27–50, DOI: 10.1002/polq.12286.
Klinghoffer, A.J. 1976. Sino-Soviet Relations and the Politics of Oil. Asian Survey 16 (6), pp. 540–552.
Lee, P.K. 2005. China’s Quest for Oil Security: Oil (Wars) in the Pipeline? Pacific Review 18(2), pp. 286–288, DOI: 10.1080/09512740500162949.
Lei, W. and Qinyu, S. 2006. Will China Go to War over Oil? Far Eastern Economic Review 169(3), pp. 38–40.
Leung, G.C.K. 2011. China’s Energy Security: Perception and Reality. Energy Policy 39(3), pp. 1330– –1337, DOI: 10.1016/j.enpol.2010.12.005.
Liao et al. 2018 – Liao, T., Morse, E. and Yuen, A. 2018. China’s New Crude Oil Benchmark. OIES Forum (113), pp. 34–37.
Lind, J. and Press, D.G. 2018. Markets or Mercantilism? How China Secures Its Energy Supplies. International Security 42(4), pp. 170–204, DOI: 10.1162/ISEC_a_00310.
Lons, C. and Nouwens, M. 2021. China–Iran deal: much ado about nothing? IISS. 7 April. [Online] https://www.iiss.org/blogs/analysis/2021/04/china-iran-deal [Accessed: 2021-08-17].
Maugeri, L. 2013. The Shale Oil Boom: A U.S. Phenomenon. Cambridge, MA: Belfer Center for Science and International Affairs, 66 pp.
Mearsheimer, J.J. 2001. The Future of the American Pacifier. Foreign Affairs 80(5), pp. 46–61.
Mearsheimer, J.J. 2019. Bound to Fail: The Rise and Fall of the Liberal International Order. International Security 43(4), pp. 7–50, DOI: 10.1162/ISEC_a_00342.
Meidan, M. 2016. The structure of China’s oil industry: Past trends and future prospects. Oxford: OIES, 58 pp.
Meidan, M. 2018. China’s Crude Awakening. OIES Forum (113), pp. 30–33.
Meidan, M. and Imsirovic, A. 2020. The Shanghai Oil Futures Contract and the Oil Demand Shock. Oxford: OIES, 11 pp.
Merino, A. and Graham, R. 2018. Petroyuan vs Petrodollar. OIES Forum (113), pp. 37–39.
Mirski, S. 2013. Stranglehold: The Context, Conduct and Consequences of an American Naval Blockade of China. Journal of Strategic Studies 36(3), pp. 385–421, DOI: 10.1080/01402390.2012.743885.
Mu, X. 2020. Have the Chinese National Oil Companies Paid Too Much in Overseas Asset Acquisition? USAEE Working Paper No. 20-430.
Murphy, M. and Roberts, P. 2018. The Reality of China’s Maritime Capability. RUSI Journal 163(3), pp. 74–86, DOI: 10.1080/03071847.2018.1494352.
Noël, P. 2014. Securing Middle East Oil. Adelphi Series 54 (447–448), pp. 247–256, DOI: 10.1080/19445571.2014.995949.
OPEC 2020. Annual Statistical Bulletin. [Online] https://asb.opec.org/ASB_Chapters.html [Accessed: 2021-07-07].
Ostrowski, W. 2015. State Capitalism and the Politics of Resources. [In:] Belyi, A.V. and Talus, K. eds. States and Markets in Hydrocarbon Sectors. London: Palgrave Macmillan, pp. 83–102.
Parra, F. 2009. Oil Politics: A Modern History of Petroleum. London: I.B. Tauris, 384 pp.
Pentagon 2018. Annual Report to Congress, Military and Security Developments Involving the People’s Republic of China 2018. No. 8-0F67E5F.
People’s Bank of China 2020. 2020 RMB Internationalization Report.
Ross, R.S. 2009. China’s Naval Nationalism: Sources, Prospects, and the U.S. Response. International Security 34(2), pp. 46–81, DOI: 10.1162/isec.2009.34.2.46.
Ruan, Z. 2020. The Chinese majors’ responses to the collapse in global oil prices and the COVID-19 pandemic: an upstream perspective. Oxford: OIES, 12 pp.
Seznac, J.-F. 2012. Politics of oil supply. National Oil Companies vs. International Oil Companies. [In:] Looney R. E. ed. Handbook of Oil Politics. Abingdon: Routledge, pp. 45–59.
Silk, M. and Malish, R. 2006. Are Chinese Companies Taking Over the World? Chicago Journal of International Law 7(1), pp. 105–131.
Simes, D. 2020. China and Russia ditch dollar in move towards ‘financial alliance’. Financial Times 17 August. [Online] https://www.ft.com/content/8421b6a2-1dc6-4747-b2e9-1bbfb7277747. [Accessed: 2021-07-07].
Spivak, V. 2017. Why a Russia-China Currency Swap Agreement Turned Out To Be a Damp Squib. Car- negie Moscow Center. 25 April. [Online] https://carnegie.ru/2017/04/25/why-Russia-China-currency-swap-agreement-turned-out-to-be-damp-squib-pub-69850. [Accessed: 2021-07-07].
Stokes, D. and Raphael, S.R. 2010. Global Energy Security and American Hegemony. Baltimore: Johns Hopkins University Press, 296 pp.
The Economist 2015. America lifts its ban on oil exports. 18 December. [Online] https://www.economist.com/finance-and-economics/2015/12/18/america-lifts-its-ban-on-oil-exports. [Accessed: 2021-07-07].
The Global Times 2020. Non-dollar trade settlements between China, Russia hit new high. 3 November. [Online]. https://www.globaltimes.cn/content/1205589.shtml. [Accessed: 2021-07-07].
Vermeer, E.B. 2015. The global expansion of Chinese oil companies: Political demands, profitability and risks. China Information 29(1), pp. 3–32, DOI: 10.1177/0920203X14566177.
Watkins, S. 2021. The Wider Ramifications of a China-Aramco Deal. Oilprice. 3 May. [Online] https://oilprice.com/Energy/Energy-General/The-Wider-Ramifications-Of-A-China-Aramco-Deal.html. [Accessed: 2021-07-07].
Woertz, E. 2012. Oil, the Dollar, and the Stability of the International Financial System. [In:] Looney R. E. ed. Handbook of Oil Politics. Abingdon: Routledge, pp. 375–400.
Xiaochuan, Z. 2009. Reform the international monetary system. BIS Review 41, pp. 1–3.
Ziegler, Ch.E. and Menon, R. 2014. Neomercantilism and Great-Power Energy Competition in Central Asia and the Caspian. Strategic Studies Quarterly 8(2), pp. 17–41.
Go to article

Authors and Affiliations

Rafał Ulatowski
1
ORCID: ORCID

  1. Faculty of Political Science and International Studies, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The phyllosphere refers to the entire aerial habitat of plants while phylloplane describes the entire leaf surface. The phylloplane provides a niche for diversified microbial communities and as such it is an important ecosystem both ecologically and economically. For many years, phylloplane dwellers have been studied as bio protectants and enhancers of growth in host plants. Plants and phylloplane-microbial-interactions result in increased fitness and productivity of agricultural crops. In this study, an attempt was made to compile previous studies in order to better understand the role of phylloplane microbiota in influencing the physiology of flora. We also proposed possible further research to explore molecular aspects of signaling mechanisms established by the phylloplane microbial community with their hosts which impact the latter’s physiology.
Go to article

Bibliography


Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: 10.1016/j.plantsci.2016.02.008
Ahmad P., Prasad M.N. 2011. Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science and Business Media. DOI: 10.1007/978-1-4614-0634-1
Aisyah S.N., Sulastri S., Retmi R., Yani R.H., Syafriani E., Syukriani L., Fatchiyah F., Bakhtiar A., Jamsari A. 2017. Suppression of Colletotrichum gloeosporioides by Indigenous Phyllobacterium and its compatibility with Rhizobacteria. Asian Journal of Plant Pathology 11 (3): 139–147. DOI: 10.3923/ajppaj.2017.139.147
Alam S.S., Sakamoto K., Amemiya Y., Inubushi K. 2010. Biocontrol of soil-borne Fusarium wilts of tomato and cabbage with a root-colonizing fungus, Penicillium sp. EU0013. p. 1508. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 Aug 2010, Brisbane, Australia.
Andrews J.H., Harris R.F. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology 38 (1): 145–180. DOI: https://doi.org/10.1146/annurev.phyto.38.1.145
Arnold A.E., Maynard Z., Gilbert G.S., Coley P.D., Kursar T.A. 2000. Are tropical fungal endophytes hyperdiverse? Ecology Letters 3 (4): 267–74. DOI: https://doi.org/10.1046/j.1461-0248.2000.00159.x
Atamna‐Ismaeel N., Finkel O.M., Glaser F., Sharon I., Schneider R., Post A.F., Spudich J.L., von Mering C., Vorholt J.A., Iluz D., Béjà O. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental Microbiology 14 (1): 140–146. DOI: 10.1111/j.1462-2920.2011.02554.x
Baiyee B., Ito S.I., Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology 106: 96–101. DOI: https://doi.org/10.1016/j.pmpp.2018.12.009
Barda O., Shalev O., Alster S., Buxdorf K., Gafni A., Levy M. 2015. Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Disease 99 (5): 621–626. DOI: http://dx.doi.org/10.1094/PDIS-04-14-0377-RE
Batool F., Rehman Y., Hasnain S. 2016. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science 9 (4): 313–322. DOI: 10.1080/21553769.2016.1256842
Berger S., Sinha A.K., Roitsch T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany 58 (15–16): 4019–4026. DOI: https://doi.org/10.1093/jxb/erm298
Bodenhausen N., Horton M.W., Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8 (2): e56329. DOI: https://doi.org/10.1371/journal.pone.0056329
Bowatte S., Newton P.C., Brock S., Theobald P., Luo D. 2015. Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. The ISME Journal 9 (1): 265–267. DOI: https://doi.org/10.1038/ismej.2014.118
Bowes G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell and Environment 14 (8): 795–806. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01443.x
Braun S.D., Hofmann J., Wensing A., Weingart H., Ullrich M.S., Spiteller D., Völksch B. 2010. In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. Journal of Phytopathology 158 (4): 288–295. DOI: https://doi.org/10.1111/j.1439-0434.2009.01612.x
Bringel F., Couée I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in Microbiology 6: 486. DOI: https://doi.org/10.3389/fmicb.2015.00486
Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V., Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838. DOI: https://doi.org/10.1146/annurev-arplant-050312-120106
Buxdorf K., Rahat I., Levy M. 2013. Pseudozyma aphidis induces ethylene-independent resistance in plants. Plant Signaling and Behavior 8 (11): e26273. DOI: 10.4161/psb.26273
Caulier S., Gillis A., Colau G., Licciardi F., Liépin M., Desoignies N., Modrie P., Legrève A., Mahillon J., Bragard C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology 9: 143. DOI: https://doi.org/10.3389/fmicb.2018.00143
Chaudhary D., Kumar R., Sihag K., Kumari A. 2017. Phyllospheric microflora and its impact on plant growth: A review. Agricultural Reviews 38 (1): 51–59. DOI: 10.18805/ag.v0iOF.7308
Chowdappa P., Kumar S.M., Lakshmi M.J., Upreti K.K. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65 (1): 109–117. DOI: 10.1016/j.biocontrol.2012.11.009
Conrath U., Pieterse C.M., Mauch-Mani B. 2002. Priming in plant–pathogen interactions. Trends in Plant Science 7 (5): 210–216. DOI: 10.1016/s1360-1385(02)02244-6
Dara K. 2019. Improving strawberry yields with biostimulants: a 2018–2019 study. eJournal of Entomology and Biologicals. [Available on: https://ucanr.edu/blogs/strawberries-vegetables/index.cfm?tagname=induced%20resistance]
Delaney T.P. 1997. Genetic dissection of acquired resistance to disease. Plant Physiology. 113 (1): 5. DOI: 10.1104/pp.113.1.5
Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., Von Mering C., Vorholt J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences 106 (38): 16428–16433. DOI: https://doi.org/10.1073/pnas.0905240106
Dey S., Wenig M., Langen G., Sharma S., Kugler K.G., Knappe C., Hause B., Bichlmeier M., Babaeizad V., Imani J., Janzik I. 2014. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiology 166 (4): 2133–2151. DOI: https://doi.org/10.1104/pp.114.249276
Di Mario R.J., Clayton H., Mukherjee A., Ludwig M., Moroney J.V. 2017. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Molecular Plant 10 (1): 30–46. DOI: 10.1016/j.molp.2016.09.001
Dong H., Li W., Zhang D., Tang W. 2003. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Protection 22 (1): 129–134. DOI: 10.1016/S0261-2194(02)00122-9
Dourado M.N., Aparecida Camargo Neves A., Santos D.S., Araújo W.L. 2015. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International. DOI: 10.1155/2015/909016
El-Sharkawy H.H., Rashad Y.M., Ibrahim S.A. 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology 103: 84–91. DOI: https://doi.org/10.1016/j.pmpp.2018.05.002
Enya J., Shinohara H., Yoshida S., Tsukiboshi T., Negishi H., Suyama K., Tsushima S. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecology 53 (4): 524–536. DOI: https://doi.org/10.1007/s00248-006-9085-1
Esitken A., Yildiz H.E., Ercisli S., Donmez M.F., Turan M., Gunes A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124 (1): 62–66. DOI: 10.1016/j.scienta.2009.12.012
Furnkranz M., Wanek W., Richter A., Abell G., Rasche F., Sessitsch A. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal 2 (5): 561–570. DOI: https://doi.org/10.1038/ismej.2008.14
Gafni A., Calderon C.E., Harris R., Buxdorf K., Dafa-Berger A., Zeilinger-Reichert E., Levy M. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science 6: 132. DOI: https://doi.org/10.3389/fpls.2015.00132
Gherbawy Y., El-Tayeb M., Maghraby T., Shebany Y., El-Deeb B. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60 (4): 319–333. DOI: 10.1556/AAgr.60.2012.4.3
Giri S., Pati B.R. 2004. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiologica et Immunologica Hungarica 51 (1–2): 47–56. DOI: 10.1556/AMicr.51.2004.1-2.3
Guerrieri R., Vanguelova E.I., Michalski G., Heaton T.H., Mencuccini M. 2015. Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. Global Change Biology 21 (12): 4613–4626. DOI: https://doi.org/10.1111/gcb.13018
Halfeld-Vieira B.D., Vieira Júnior J.R., Romeiro R.D., Silva H.S., Baracat-Pereira M.C. 2006. Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesquisa Agropecuaria Brasileira 41 (8): 1247–1252. DOI: https://doi.org/10.1590/S0100-204X2006000800006
Harish S., Saravanakumar D., Kamalakannan A., Vivekananthan R., Ebenezar E.G., Seetharaman K. 2007. Phylloplane microorganisms as a potential biocontrol agent against Helminthosporium oryzae Breda de Hann, the incitant of rice brown spot. Archives of Phytopathology and Plant Protection 40 (2): 148–157. DOI: https://doi.org/10.1080/03235400500383651
He C.Y., Hsiang T., Wolyn D.J. 2002. Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathology 51 (2): 225–230. DOI: https://doi.org/10.1046/j.1365-3059.2002.00682.x
Holland M.A. 2011. Nitrogen: give and take from phylloplane microbes. Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, London. 28: 217–230. DOI: https://doi.org/10.1002/9780470959404.ch10
Huang S., Millar A.H. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme. Current Opinion in Plant Biology 16 (3): 344–349. DOI: https://doi.org/10.1016/j.pbi.2013.02.007
Hudson G.S., Evans J.R., von Caemmerer S., Arvidsson Y.B., Andrews T.J. 1992. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiology 98 (1): 294–302. DOI: 10.1104/pp.98.1.294
Innerebner G., Knief C., Vorholt J.A. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77 (10): 3202–3210. DOI: 10.1128/AEM.00133-11
Jogaiah S., Shetty H.S., Ito S.I., Tran L.S. 2016. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiology and Biochemistry 105: 109–117. DOI: https://doi.org/10.1016/j.plaphy.2016.04.006
Jumpponen A., Jones K.L. 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist 186 (2): 496–513. DOI: https://doi.org/10.1111/j.1469-8137.2010.03197.x
Kamle M., Borah R., Bora H., Jaiswal A.K., Singh R.K., Kumar P. 2020. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. p. 457–470. In: “Fungal Biotechnology and Bioengineering” (Hesham A.E.-L., Upadhyay R.S., Sharma G.D., Manoharachary C., Gupta V.K., eds.). Springer International Publishing. DOI: 10.1007/978-3-030-41870-0
Kembel S.W., O’Connor T.K., Arnold H.K., Hubbell S.P., Wright S.J., Green J.L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. In: Proceedings of the National Academy of Sciences. 23 Sep 2014, USA, 111 (38): 13715-13720. DOI: https://doi.org/10.1073/pnas.1216057111
Kuberan T., Vidhyapallavi R.S, Balamurugan A., Nepolean P., Jayanthi R., Premkumar R. 2012. Isolation and biocontrol potential of phylloplane Trichoderma against Glomerella cingulata in tea. International Journal of Agricultural Technology 8 (3): 1039–1050.
Lindow S.E., Brandl M.T. 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology 69 (4): 1875–1883. DOI: 10.1128/AEM.69.4.1875-1883.2003
Majeau N., Coleman J.R. 1994. Correlation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiology 104 (4): 1393–1399. DOI: https://doi.org/10.1104/pp.104.4.1393
Manching H.C., Balint-Kurti P.J., Stapleton A.E. 2014. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science 5: 403. DOI: https://doi.org/10.3389/fpls.2014.00403
Marques A.P., Pires C., Moreira H., Rangel A.O., Castro P.M. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry 42 (8): 1229–1235. DOI: https://doi.org/10.1016/j.soilbio.2010.04.014
Mathivanan N., Prabavathy V.R., Vijayanandraj V.R. 2008. The effect of fungal secondary metabolites on bacterial and fungal pathogens. Secondary Metabolites in Soil Ecology. Soil Biology 14: 129–140.
Mazinani Z., Zamani M., Sardari S. 2017. Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicenna Journal of Medical Biotechnology 9 (1): 31.
Mitra J., Sahi A.N., Paul P.K. 2014. Phylloplane microfungal metabolite influences activity of RuBisCO. Archives of Phytopathology and Plant Protection 47 (5): 584–590. DOI: https://doi.org/10.1080/03235408.2013.814827
Mitra J., Sharma P.D., Paul P.K. 2019. Do phylloplane microfungi influence activity of Rubisco and Carbonic anhydrase. South African Journal of Botany 1 (124): 118–126. DOI: https://doi.org/10.1016/j.sajb.2019.04.033
Mohanty S.R., Dubey G., Ahirwar U., Patra A.K., Kollah B. 2016. Prospect of phyllosphere microbiota: a case study on bioenergy crop Jatropha Curcas. Plant-Microbe Interaction: An Approach to Sustainable Agriculture: 453–462.
Mwajita M.R., Murage H., Tani A., Kahangi E.M. 2013. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2 (1): 606. DOI: https://doi.org/10.1186/2193-1801-2-606
Nicot P.C. 2011. Classical and Augmentative Biological Control Against Diseases and Pests: Critical Status Analysis and Review of Factors Influencing Their Success. International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section (IOBC/WPRS), Europe.
O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236 (3): 765–779. DOI: 10.1007/s00425-012-1696-9
Ortega R.A., Mahnert A., Berg C., Müller H., Berg G. 2016. The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiology Ecology 92: 1–12. DOI: https://doi.org/10.1093/femsec/fiw173
Patel M., Kothari I.L., Mohan J.S. 2004. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium, derived elicitors. Indian Journal of Experimental Biology 42 (7): 728–731.
Paul P.K., Mitra J. 2013. Phyllosphere microbes influence Succinate dehydrogenase activity in mitochondria of tomato. p. 92. In: The 19th Australasian Plant Pathology Conference (APPS). 25–28 November 2013, Auckland, New Zealand, 186 pp.
Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
Qin S., Zhou W., Lyu D., Liu L. 2014. Effects of soil sterilization and biological agent inoculation on the root respiratory metabolism and plant growth of Cerasus sachalinensis Kom. Scientia Horticulturae 170: 189–195. DOI: https://doi.org/10.1016/j.scienta.2014.03.019
Rastogi G., Sbodio A., Tech J.J., Suslow T.V., Coaker G.L., Leveau J.H. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal 6 (10): 1812–1822. DOI: https://doi.org/10.1038/ismej.2012.32
Saleem B., Paul P.K. 2016. Leaf age correlation to phyllosphere, microbe-microbe, plant-microbe interactions on Solanum lycopersicum. Thesis. Amity University, India
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Shukla S., Sharma R.B. 2016. Diversity of surface mycoflora on Tinospora cordifolia. Indian Journal of Plant Science 5: 42–53.
Singh U.B., Malviya D., Singh S., Pradhan J.K., Singh B.P., Roy M., Imram M., Pathak N., Baisyal B.M., Rai J.P., Sarma B.K. 2016. Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research 192: 300–312. DOI: https://doi.org/10.1016/j.micres.2016.08.007
Sowndhararajan K., Marimuthu S., Manian S. 2013. Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO‐111 against blister blight disease of tea. Journal of Applied Microbiology 114 (1): 209–218. DOI: https://doi.org/10.1111/jam.12026
Stiefel P., Zambelli T., Vorholt J.A. 2013. Isolation of optically targeted single bacteria using FluidFM applied to aerobic anoxygenic phototrophs from the phyllosphere. Applied and Environmental Microbiology 79 (16): 4895–4905. DOI: 10.1128/AEM.01087-13
Stone B.W., Weingarten E.A., Jackson C.R. 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews 1 (2): 533–556. DOI: https://doi.org/10.1002/9781119312994.apr0614
Su P., Tan X., Li C., Zhang D., Cheng J.E., Zhang S., Zhou X., Yan Q., Peng J., Zhang Z., Liu Y. 2017. Photosynthetic bacterium Rhodopseudomonas palustris GJ‐22 induces systemic resistance against viruses. Microbial Biotechnology 10 (3): 612–624. DOI: 10.1111/1751-7915.12704
Suguna S., Parthasarathy S., Karthikeyan G. 2020. Induction of systemic resistant molecules in phylloplane of rice plants against Magnaporthe oryzae by Pseudomonas fluorescens. International Research Journal of Pure and Applied Chemistry 21 (3): 25–36. DOI: https://doi.org/10.9734/irjpac/2020/v21i330158
Sun P.F., Fang W.T., Shin L.Y., Wei J.Y., Fu S.F., Chou J.Y. 2014. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PloS One 9 (12): e114196. DOI: https://doi.org/10.1371/journal.pone.0114196
Sunderhaus S., Dudkina N.V., Jänsch L., Klodmann J., Heinemeyer J., Perales M., Zabaleta E., Boekema E.J., Braun H.P. 2006. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. Journal of Biological Chemistry 281 (10): 6482–6488. DOI: 10.1074/jbc.M511542200
Thakur S. 2016. Application of phylloplane fungi to manage the leaf spot of Rauwolfia serpentina caused by Alternaria alternata. International Journal of Life Sciences Scientific Research 2 (2): 163–172.
Toivonen P.M., Hodges D.M. 2011. Abiotic stress in harvested fruits and vegetables. p. 39–58. In: “Abiotic Stress in Plants-Mechanisms and Adaptations” (A. Shanker, ed.). InTech, China. DOI: 10.5772/22524
Toyota K., Shirai S. 2018. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens. Microbes and Environments 33 (4): 345–347. DOI: 10.1264/jsme2.ME3304rh
Turner T.R., James E.K., Poole P.S. 2013. The plant microbiome. Genome Biology 14 (6): 209. DOI: https://doi.org/10.1186/gb-2013-14-6-209
van Wees S.C., de Swart E.A., van Pelt J.A., van Loon L.C., Pieterse C.M. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 97 (15): 8711–8716. DOI: https://doi.org/10.1073/pnas.130425197
Voříšková J., Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal 7 (3): 477–486. DOI: https://doi.org/10.1038/ismej.2012.116
Wang L.F, Wang M., Zhang Y. 2014. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Tropical Plant Pathology 39 (3): 242–250. DOI: http://dx.doi.org/10.1590/S1982-56762014000300008
Watanabe K., Kohzu A., Suda W., Yamamura S., Takamatsu T., Takenaka A., Koshikawa M.K., Hayashi S., Watanabe M. 2016. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. Springer Plus 5: 1596. DOI: https://doi.org/10.1186/s40064-016-3286-y
Whipps J., Hand P., Pink D., Bending G.D. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology 105 (6): 1744–1755. DOI: https://doi.org/10.1111/j.1365-2672.2008.03906.x
Yadav R.K., Kakamanoli K., Vokou D. 2010. Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecoprint: An International Journal of Ecology 17: 47–52. DOI: https://doi.org/10.3126/eco.v17i0.4105
Yadav S.L., Mishra A.K., Dongre P.N., Singh R. 2011. Assessment of fungitoxicity of phylloplane fungi against Alternaria brassicae causing leaf spot of mustard. Journal of Agricultural Technology 7 (6): 1823–1831.
Zhou L.S., Tang K., Guo S.X. 2018. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. International Journal of Molecular Sciences 19 (1): 270. DOI: https://doi.org/10.3390/ijms19010270
Go to article

Authors and Affiliations

Susmita Goswami
1
ORCID: ORCID
Navodit Goel
1
Rita Singh Majumdar
2

  1. Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
  2. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

During 2016–2017 surveys, carried out for phytoplasma diseases in ornamental plants in Chaharmahal and Bakhtiari provinces, Iran, found symptoms of virescence, phyllody, reduced size of leaves and flowers in columbine ( Aquilegia vulgaris). Total DNAs extracted from symptomatic and symptomless plants were tested for the presence of phytoplasma using P1/P7 and R16F2n/R16R2 primers in direct and nested PCR producing amplicons of about 1.8 and 1.2 kb, respectively, from all symptomatic A. vulgaris plants, but not from symptomless ones. The consensus sequence of the detected phytoplasma named Aquilegia phyllody (APh) was 100% identical with strains clustering to phytoplasmas enclosed in the 16SrI group as also confirmed by phylogenetic analyses. Both real and virtual restriction fragment length polymorphism analysis of R16F2n/R16R2 amplicons showed profiles that were identical to each other and indicated the affiliation of the APh phytoplasma to the 16SrI-R subgroup. This is the first report of a 16SrI-R phytoplasma associated with this A. vulgaris phyllody disease.
Go to article

Bibliography


Asghari Tazehkand S., Hosseini Pour A., Heydarnejad J., Massumi H., Azadvar M. 2010. Identification of phytoplasmas associated with cultivated and ornamental plants in Kerman province, Iran. Journal of Phytopathology 158: 713–720. DOI: https://doi.org/10.1111/j.1439-0434.2010.01682.x
Babaie G., Khatabi B., Bayat H., Rastgou M., Hosseini A., Salekdeh GH. 2007. Detection and characterization of phytoplasma infecting ornamental and weed plants in Iran. Journal of Phytopathology 155: 368–372. DOI: https://doi.org/10.1111/j.1439-0434.2007.01247.x
Bastida J.M., Alcántara J.M., Rey P.J., Vargas P., Herrera C.M. 2010. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Plant Systematics and Evolution 284: 171–185. DOI: https://doi.org/10.1007/s00606-009-0243-z
Bellardi M.G., Bertaccini A., Madhupriya, Rao G.P. 2018. Phytoplasma diseases in ornamental crops. p. 191–233. In: “Phytoplasmas: Plant Pathogenic Bacteria – I” (G.P. Rao, A. Bertaccini, N. Fiore, L. Liefting, eds.). Springer, Singapore.
Cieslinska M., Komorowska B., Stankiene J. 2006. Occurrence and identification of aster yellows related phytoplasma in strawberry in Poland and Lithuania. Acta Horticulturae 708: 141–146. DOI: 10.17660/ActaHortic.2006.708.22
Deng S., Hiruki C. 1991. Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiological Methods 14: 53–61. DOI: https://doi.org/10.1016/0167-7012(91)90007-D
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Fani S.R., Bolok Yazdi H.R., Raoufi D., Jadidi O., Bertaccini A. 2015a. Status of alfalfa witches’ broom phytoplasma disease in Iran. Phytopathogenic Mollicutes 5: 65–66.
Esmailzadeh Hosseini S.A., Salehi M., Khodakaramian G., Mirchenari S.M., Bertaccini A. 2015b. An up to date status of alfalfa witches’ broom disease in Iran. Phytopathogenic Mollicutes 5: 9–18.
Esmailzadeh Hosseini S.A., Salehi M., Salehi E. 2015c. First report of a 16SrI-B subgroup related phytoplasma associated with Eruca sativa phyllody in Iran. New Disease Reports 32: 22.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. 2016. Molecular identification and phylogenetic analysis of phytoplasmas associated with alfalfa witches’ broom diseases in the western areas of Iran. Phytopathogenic Mollicutes 6: 16–22. DOI: http://dx.doi.org/10.5958/2249-4677.2016.00003.7
Girsova N.V., Bottner-Parker K.D., Bogoutdinov D.Z., Kastalyeva T.B., Meshkov Y.I., Mozhaeva K.A., Lee I-M. 2017. Diverse phytoplasmas associated with leguminous crops in Russia. European Journal of Plant Pathology 149: 599–610. DOI: https://doi.org/10.1007/s10658-017-1209-6
Green M.R., Sambrook J. 2012. Molecular Cloning: a Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Gundersen D.E., Lee I-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer sets. Phytopathologia Mediterranea 35: 144–151.
Harju V.A., Skelton A.L., Monger W.A., Jarvis B., Mumford R.A. 2008. Identification of an X-disease (16SrIII) group phytoplasma (‘Candidatus Phytoplasma pruni’) infecting delphiniums in the UK. Plant Pathology 57: 769. DOI: https://doi.org/10.1111/j.1365-3059.2007.01808.x
Healey A., Furtado A., Cooper T., Henry R.J. 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10: 21. DOI: https://doi.org/10.1186/1746-4811-10-21
Jomantiene R., Maas J.L., Takeda F., Davis R.E. 2002. Molecular identification and classification of strawberry phylloid fruit phytoplasma in group 16SrI, new subgroup R. Plant Disease 86: 920. DOI: 10.1094/PDIS.2002.86.8.920C
Jomantiene R., Zhao Y., Lee I-M., Davis R.E. 2011. Phytoplasmas infecting cherry and lilac represent two distinct lineages having close evolutionary affinities with clover phyllody phytoplasma. European Journal of Plant Pathology 130: 97–107. DOI: https://doi.org/10.1007/s10658-010-9735-5
Kaminska M. 2008. Phytoplasma in ornamental plants. p. 195–218. In: “Characterization, Diagnosis and Management of Phytoplasmas” (N.A. Harrison, G.P. Rao, C. Marcone, eds.). Studium Press LLC, Texas, USA
Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution 33: 1870–1874. DOI: 10.1093/molbev/msw054
Lee I-M., Gundersen-Rindal D.E., Davis R.E., Bartoszyk I.M. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48: 1153–1169. DOI: https://doi.org/10.1099/00207713-48-4-1153
Noutsos C., Perera A.M., Nikolau B.J., Seaver S.M.D., Ware D.H. 2015. Metabolomic profiling of the nectars of Aquilegia pubescens and A. canadensis. PLoS One 10 (10): e0141384. DOI: https://doi.org/10.1371/journal.pone.0124501
Parrella G., Paltrinieri S., Botti S., Bertaccini A. 2008. Molecular identification of phytoplasmas from virescent ranunculus plants and from leafhoppers in southern Italian crops. Journal of Plant Pathology 90: 537–543.
Přibylová J., Petrzik K., Špak J. 2011. Association of aster yellows subgroup 16SrI-C phytoplasmas with a disease of Ribes rubrum. Bulletin of Insectology 64 (Supplement): S65-S66.
Rashidi M., Ghosta Y., Bahar M. 2010. Molecular identification of a phytoplasma associated with Russian olive witches’ broom in Iran. European Journal of Plant Pathology 127: 157–159. DOI: https://doi.org/10.1007/s10658-010-9589-x
Salehi M., Esmailzadeh Hosseini S.A., Salehi E. 2016. First report of a ‘Candidatus Phytoplasma asteris’ related phytoplasma associated with Eucalyptus little leaf disease in Iran. Journal of Plant Pathology 98: 175. DOI: http://dx.doi.org/10.4454/JPP.V98I1.054
Salehi M., Esmailzadeh Hosseini S.A., Salehi E. 2018. First report of a 'Candidatus Phytoplasma asteris'-related strain (16SrI-B) associated with Sonchus oleraceus (common sowthistle) phyllody disease in Iran. New Disease Reports 37: 6. DOI: 10.5197/j.2044-0588.2018.037.006
Samuitiene M., Navalinskiene M., Jomantiene R., Davis R.E. 2004. Molecular detection and characterization of phytoplasmas infecting columbine ( Aquilegia L.) plants. Biologia 2: 15–17.
Schneider B., Seemüller E., Smart C.D., Kirkpatrick B.C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. p. 369–380. In: “Molecular and Diagnostic Procedures in Mycoplasmology” (S. Razin, J.G. Tully, eds.). Academic Press. San Diego, CA, USA.
Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526. DOI: 10.1093/oxfordjournals.molbev.a040023
Zhao Y., Wei W., Lee I-M., Shao J., Suo X., Davis R.E. 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59: 2582–2593. DOI: 10.1099/ijs.0.010249-0
Go to article

Authors and Affiliations

Ghobad Babaei
1
ORCID: ORCID
Seyyed Alireza Esmaeilzadeh-Hosseini
2
Soudeh Davoodi
1
Assunta Bertaccini
3

  1. Plant Protection Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran
  2. Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran
  3. Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin, Bologna, Italy
Download PDF Download RIS Download Bibtex

Abstract

Today the use of plant extracts, in particular essential oils, is a natural alternative to synthetic insecticides in the fight against crop pests. In this study, the insecticidal activity of essential oils and powder of Xylopia aethiopica (Annonaceae) were tested by both fumigation and contact against Callosobruchus maculatus. The essential oil of X. aethiopica, obtained by steam distillation and the powder, with a particle size of 1 mm, were used for the tests. The analysis of essential oils and powder of X. aethiopica by GC-MS/FID and GC/MS-HS-SPME, showed that the main compounds were β-pinene (28.9–19.0%), 1,8-cineole (14.9–7.6%) and α-pinene (9.8–19.4%). Insecticidal activity of essential oils and powder of X. aethiopica, respectively, by fumigation (F) and contact (C) against C. maculatus showed toxicity LD50 = 0.2 ± 0.0 μl.cm–3, LT50 = 16.4 ± 1.2 hours (F) and LD50 = 9.2 ± 0.7 g.kg–1, LT50 = 69.6 ± 0.4 hours (C). The essential oil and powder of X. aethiopica can be considered as bio-insecticides against C. maculatus for the protection of cowpeas in Senegal.
Go to article

Bibliography


Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Adams R. 2007. Identification of Essential Oil Components by Gas Chromatography/Qua-drupole Mass Spectrometry. 4th ed., Allured Publishing Co, Carol Stream IL., USA.
Adedire C.O., Obembe O.M., Akinkurolere R.O., Oduleye S.O. 2011. Response of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. Journal of Plant Diseases and Protection 118 (2): 75–79. DOI: 10.1007/BF03356385
Ahmed S., Khan M.A., Ahmad N. 2002. Determination of susceptibility level of phosphine in various strains of dhora (Callosobruchus maculatus F.). International Journal of Agriculture and Biology 4: 329–331.
ANSD. 2018. Bulletin mensuel des statistiques économiques. Ministère de l’économie, des finances et du plan Sénégal, 140 pp. (in French)
Beck C.W., Bulmer L.S.A. 2014. Handbook on Bean Beetles, Callosobruchus maculatus. Texas A&M AgriLife Extension, Cowpea Weevils.
Boniface Y., Jean-Pierre N, Philippe S., Félicien A., Dominique S. 2010. Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (DUNAL) A. Richard contre les pathogènes des denrées alimentaires. Journal de la Société́ Ouest-Africaine de Chimie 29: 19–27.
Chougourou D.C., Alavo T.B.C. 2011. Systèmes de stockage et méthodes endogènes de lutte contre les insectes ravageurs des légumineuses à grains entreposées au Centre Bénin. Conseil Africain et Malgache de Enseignement Supérieur - Série A 12 (2): 137–141.
Diop S.M., Gueye M.T., Ndiaye I., Ndiaye E.H.B., Diop M.B., Thiam A., Fauconnier, M.L. and Lognay G. 2017. Study of the chemical composition of essential oils and floral waters of Cymbopogon citratus (DC.) Stapf (Poaceae) from Senegal. International Journal of Biological and Chemical Sciences 11 (4): 1884–1892. DOI: 10.4314/ijbcs.v11i4.37
Edwin E., Regina A., Ifeoma V. 2018. Insecticidal activity of Xylopia aethiopica (Family; Annonaceae) against Callosobruchus maculatus (F) (Coleoptera: Bruchidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Biological Studies 1 (3): 106–115.
Edwin I.E., Jacob I.E. 2017. Bio-insecticidal potency of five plant extracts against Cowpea Weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L). Jordan Journal of Biological Sciences 10 (4): 317-322.
Enan E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 130 (3): 325–337. DOI: 10.1016/S1532-0456(01)00255-1.
Fernando H.S., Karunaratne M.M. 2012. Ethnobotanicals for storage insect pest management: Effect of powdered leaves of Olax zeylanica in suppressing infestations of rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Tropical Forestry and Environment 2: 20–25.
Guèye M.T., Seck D., Wathelet J.P., Lognay G. 2011. Lutte contre les Ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnology, Agronomy, Society and Environment 15 (1): 183–194.
Ilboudo Z. 2009. Activité Biologique de quatre huiles essentielles contre Callosobruchus maculatus Fab. (Coleoptera : Bruchidae), insecte ravageur des stocks de niébé au Burkina Faso », Entomologie, Université de Ouagadougou, Burkina Fasso, 150 pp.
Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51 (1): 45–66. DOI: 10.1146/annurev.ento.51.110104.151146
Jirovetz L., Wobus A., Buchbauer G., Shafi M.P., Thampi P.T. 2004. Comparative analysis of the essential oil and SPME-headspace aroma compounds of Cyperus rotundus L. roots/tubers from South-India using GC, GC-MS and olfactometry, Journal of Essential Oil Bearing Plants 7 (2): 100–106. DOI: 10.1080/0972-060X.2004.10643373
Joulain D., König W. 1998. The Atlas of Sesquiterpene Data Hydrocarbons. EB Verlag, Hamburg, Germany. ISBN 3-930826-48-8.
Kabir B.G.J. 2013. Laboratory evaluation of efficacy of three Diatomaceous earth formulations against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) in stored wheat. European Scientific Journal 30 (9): 116–124.
Kayombo M.A., Mutombo T.J.M, Somue M.A., Muka M.P., Wembonyama O.M., Tshibangu B.K.E., Kaboko K.J. 2014. Effet de la poudre de Basilic (Ocimum basilicum) dans la conservation des graines de Niébé (Vigna unguiculata L. Walp.) en stock contre Callosobruchus maculatus F. à Mbuji- Mayi (RD. Congo). Congo sciences 2 (2): 61–66.
Keane S., Ryan M.F. 1999. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochemistry and Molecular Biology 29 (12): 1097–1104. DOI: 10.1016/S0965-1748(99)00088-0
Koffi S.E., Roger H.C.N., Kodjo E., Kokou A.A., Kokouvi D., Honoré K.K. 2012. Chemical composition and insecticidal activity of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) essential oil on Callosobruchus maculatus. Journal de la Societé Ouest-africaine de Chimie 34: 71–77.
Korunic Z. 1998. Review Diatomaceous earths, a group of natural insecticides. Journal of Stored Products Research 34 (2–3): 87–97. DOI: 10.1016/S0022-474X(97)00039-8
Kostyukovsky K., Rafaeli A., Gileadi C., Demchenko N., Shaaya E. 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science 58 (11): 1101–1106. DOI: 10.1002/ps.548
Kouninki H., Hance T.F.A., Noudjou F.A., Lognay G., Malaisse F., Ngassoum M.B., Mapongmetsem P.M., Ngamo T.L.S., Haubruge E. 2007. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. Journal of Applied Entomology 131 (4): 269–274.
Mills C., Cleary B.V., Walsh J.J., Gilmer J.F. 2010. Inhibition of acetylcholinesterase by Tea Tree oil. Journal of Pharmacy and Pharmacology 56 (3): 375–379. DOI: 10.1211/0022357022773
Mukendi K.R., Ntanga N.R., Kaseba K.S., Tshiamala N., Kamukenji A. and Mpoyi K.G. 2016. Dégâts des bruches sur le pouvoir germinatif des graines de quatre variétés de Niébé infesté pendant 60 jours à Ngandajika. Journal of Applied Biosciences 98: 9323–9329. DOI: http://dx.doi.org/10.4314/jab.v98i1.8
Ndiaye E.H.B., Gueye M.T., Ndiaye I., Diop S.M., Diop M.B., Thiam A., Fauconnier M.L., Lognay G. 2017. Chemical composition of distilled essential oils and hydrosols of four senegalese citrus and enantiomeric characterization of chiral compounds. Journal of Essential Oil Bearing Plants 20 (3): 820–834.
Ngamo L., Hanc T.H. 2007. Diversité des ravageurs des denrées et méthodes alternatives de lutte en milieu tropical. Tropicultura 25 (4): 215–220.
Nguemtchouin M.G.M. 2012. Formulation d’insecticides en poudre par adsorption des huiles essentielles de Xylopia aethiopica et de Ocimum gratissimum sur des argiles camerounaises modifiées. Thèse doctotat en cotutelle, universités Ngaoundere et Montpellier, 293 pp.
Sahaf B.Z., Moharramipour S., Meshkatalsadat M.H. 2008. Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium vastaneum (Herbst) and Sitophilus orzae (L.). Journal of Asia-Pacific Entomology 11 (4): 175–179.
Sarwar M., Ahmad N., Bux M., Tofique M. 2012. Potential of plant materials for the management of cowpea bruchid Callosobruchus analis (Coleoptera: Bruchidae) in gram Cicer arietinum during storage. The Nucleus 49 (1): 61–64.
Sattelle D.B., Pinnock R.D., Wafford K.A., David J.A. 1988. GABA receptors on the cell-body membrane of an identified insect motor neuron. Proceedings of the Royal Society B: Biological Sciences 232(1269): 443-456. DOI: 10.1098/rspb.1988.0006
Thiam A., Guèye M.T., Ndiaye I., Diop S.M., Ndiaye E.H.B., Fauconnier M.L., Lognay G. 2018. Effect of drying methods on the chemical composition of essential oils of Xylopia aethiopica fruits (Dunal) A. Richard (Annonaceae) from southern Senegal. American Journal of Essential Oils and Natural Products 6 (1): 25–30.
Thiam A., Gueye M.T., Sanghare C.H., Ndiaye E.H.B., Diop S.M., Cissokho P.S., Diop M.B., Ndiaye I., Fauconnier M.L. 2020. Chemical composition and anti-inflammatory activity of Apium graveolens var. dulce essential oils from Senegal. American Journal of Food Science and Technology 8 (6): 226–232. DOI: 10.12691/ajfst-8-6-1.
Go to article

Authors and Affiliations

Abdoulaye Thiam
1 2
ORCID: ORCID
Momar Talla Guèye
2
Cheikhna Hamala Sangharé
1 2
Papa Seyni Cissokho
2
Elhadji Barka Ndiaye
1
Serigne Mbacké Diop
1
Michel Barka Diop
3
Ibrahima Ndiaye
1
Marie Laure Fauconnier
4

  1. Department of Chemistry, Faculty of Sciences and Techniques, Cheikh Anta Diop University, Dakar, Senegal
  2. Laboratory of Phytosanitary Analyses, Institute of Food Technology, Dakar, Senegal
  3. Unit of Training and Research of Agronomic Sciences, Aquaculture and Food Technology (S2ATA), Gaston Berger University, Saint-Louis, Senegal
  4. General and Organic Chemistry Laboratory, Gembloux Agro-Bio-Tech University of Liege, Gembloux, Belgium

This page uses 'cookies'. Learn more