Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a method to optimize reinforcement layout of three-dimensional members under a state of complex stress and multiple load cases (MLCs). To simulate three-dimensional members, the spatial truss-like material model is adopted. Three families of truss-like members along orthotropic directions are embedded continuously in concrete. The optimal reinforcement layout design is obtained by optimizing the member densities and orientations. The optimal design of three-dimensional member is carried out by solving the problem of minimum volume of reinforcing bars with stress constraints. Firstly, the optimized reinforcement layout under each single load case (SLC) is obtained as per the fully stressed criterion. Second, on the basis of the previous results, an equivalent multi-case optimization is proposed by introducing the idea of stiffness envelope. Finally, according to the characteristics of the truss-like material, a closed and symmetrical surface is adopted to fit the maximum directional stiffness under all SLCs. It can be proved that the densities and orientations of truss-like members are the eigenvalues and eigenvectors of the surface coefficient matrix, respectively. Several three-dimensional members are used as examples to demonstrate the capability of the proposed method in finding the best reinforcement layout design of each reinforced concrete (RC) member and to verify its efficiency in application to real design problems.
Go to article

Authors and Affiliations

Hao Cui
1
ORCID: ORCID
Junjie Xia
1
ORCID: ORCID
Lang Wu
1
ORCID: ORCID
Min Xiao
1
ORCID: ORCID

  1. College of Civil Engineering and Architecture, Jiangxi Science and Technology Norma lUniversity, No.605 Fenglin Avenue, 330013, Nanchang, China
Download PDF Download RIS Download Bibtex

Abstract

The running speed of high-speed trains in the tunnel is as high as 350 km, which is very sensitive to the construction disturbance of the new shield tunnel. Therefore, it is of positive significance to study the influence of shield tunneling on existing high-speed railway lines and tunnel structures and control standards. Combined with centrifuge test and three-dimensional numerical simulation, the dynamic response of shield tunnel undercrossing existing high-speed railway tunnel is studied, and the influence of settlement joint and steel pipe pile reinforcement on existing tunnel is analyzed. Studies have shown that the existence of existing tunnels will reduce the surface settlement caused by tunnel excavation, but this shielding effect will be reduced if the influence of construction joints is considered. Therefore, if the construction joint is not considered in the numerical calculation, the ground deformation will be underestimated and the mechanical performance of the existing tunnel structure will be overestimated. In addition, steel pipe piles can effectively control the settlement of existing tunnels.
Go to article

Authors and Affiliations

Ruizhen Fei
1 2
ORCID: ORCID
Limin Peng
1
ORCID: ORCID
Chunlei Zhang
2
ORCID: ORCID
Jiqing Zhang
2
ORCID: ORCID
Peng Zhang
2
ORCID: ORCID

  1. Central South University, School of Civil Engineering, Changsha, 410075, China
  2. China Railway Design Corporation, Tianjin, 300142, China
Download PDF Download RIS Download Bibtex

Abstract

The construction and operation of buildings is characterized by resource intensity in the form of massive consumption of raw materials and products, large financial and human labor expenditures, energy consumption, water consumption, long term, and significant environmental impacts, especially during their use. The currently implemented concept of sustainable development and circular economy influences the directions of development of construction industry and increases interest in self-sufficient buildings, especially in terms of energy, use of closed water circuits, use of waste materials. The aim of the article is to analyse the key determinants for the development of autonomous buildings. The general idea is that an autonomous building is designed to function without the support and services provided by public facilities, such as power, water, gas and sewage networks, waste management, and even the provision of food. On the basis of literature analysis and expert interviews, the factors characterizing this type of construction were determined. Their analysis by means of the DEMATEL method allowed to assess and indicate the most significant cause-and effect relationships conditioning the development of autonomous buildings.
Go to article

Authors and Affiliations

Aleksandra Mach
1
ORCID: ORCID
Joanna Sagan
1
ORCID: ORCID
Anna Sobotka
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Environmental protection is one of the objectives of the implemented concept of sustainable development and circular economy. The construction industry and its products (building objects) have a large contribution in negative influences, therefore all actions limiting them are necessary. One way of doing this is to apply substitution to existing unfavourable solutions, both in terms of construction and materials as well as technology and organization. The aim of the article was to determine the key factors conditioning the use of substitution at each stage of the investment and construction cycle, leading to environmental protection. The research paid attention to the use of substitute recycled products. The defined factors were subjected to a SWOT analysis and then, using the DEMATEL method, cause-andeffect relationships were identified that determine development in the application of substitution in the environmental context of sustainable and closed-cycle construction. The analysis was carried out by using a summative, linear aggregation of the values of the position and relationship indicators.
Go to article

Authors and Affiliations

Anna Sobotka
1
ORCID: ORCID
Kazimierz Linczowski
1
ORCID: ORCID
Aleksandra Radziejowska
1
ORCID: ORCID

  1. AGH University of Science and Technology in Cracow, Faculty of Civil Engineering and Resource Management, Department of Geomechanics, Civil Engineering and Geotechnics, Av. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Dynamic biaxial compression tests and Particle Flow Code numerical simulations of the cement mortar specimens with a single joint were carried out to study the mechanical properties and crack evolution of artificial rock samples with a single joint. The effects of lateral stress 𝜎2, loading rate V , the dip angle β (between the vertical loading direction and the joint) on the biaxial compressive strength 𝜎 b, and the evolution lawof crackwere investigated. Test results showed that; (1) when both the dip angle β and the loading rate V remained unchanged, the biaxial compressive strength 𝜎 b increased with the increase in the lateral stress 𝜎2, while 𝜎2 had no obvious effect on the crack evolution law; (2) when both the dip angle β and the lateral stress 𝜎2 were kept unchanged, the loading rate V had an insignificant effect on the biaxial compressive strength 𝜎 b and the crack evolution law; (3) when both the lateral stress 𝜎2 and the loading rate V were constant, the biaxial compressive strength 𝜎 b decreased first and then increased with the increase in the dip angle β ; however, the dip angle β did not significantly affect the crack evolution law. The conclusions obtained in this paper are presented for the first time.
Go to article

Authors and Affiliations

Xiong Liangxiao
1
ORCID: ORCID
Haijun Chen
2
ORCID: ORCID
Xinghong Gao
3
ORCID: ORCID
Zhongyuan Xu
4
ORCID: ORCID
Deye Hu
1
ORCID: ORCID

  1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
  2. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing,210029, China
  3. China Construction Third Bureau First Engineering Co., Ltd., Wuhan 430040, China
  4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
Download PDF Download RIS Download Bibtex

Abstract

Adetailed tie model of cracking is proposed. The model is dedicated to both semi-massive RC (reinforcement concrete) members subjected to early-age imposed strains and non-massive members in which imposed strains occur after concrete hardening. As distinct from the currently applied European guidelines, the proposed model enables an analysis of crack width changes. These are a function of progressive imposed strain, material and geometry data, but also depend on the scale of cracking which determines the strain conditions of a member. Consequently, the new model takes account of not only the factors determining the cracking development but also the member relaxation effect that results from cracking. For this reason a new definition of restraint factor is proposed, which takes into account the range of cracking of a structural member, i.e. the number and width of cracks. Parametric analyses were performed of both the changes of the degree of restraint after cracking as well as the changes of crack width depending on the adopted type of aggregate, class of concrete and the coefficient of thermal expansion of concrete. These analyses indicate the potential benefits of the application of the presented model for both a more accurate interpretation of research and economical design of engineering structures.
Go to article

Authors and Affiliations

Mariusz Zych
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, St. Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the fact that construction projects, due to their specificity, are complex, temporary and dynamic. Over their course, participants change, successive construction works are done and new information becomes available. This carries over to difficulties in communication. In the literature, numerous studies note the fact that a network-based approach to the analysis and monitoring of communication as a part of complex construction projects is commendable. Relations between agents, knowledge and tasks in the context of communication within a construction project can be visualized in the form of a meta-network, and suitably developed structural measures can be used to analyze them.
In this paper, the authors used meta-network theory to analyze relations between project participants, knowledge and tasks in the context of communication within a construction project, on the basis of the construction of a housing estate located in Katowice, Poland. Meta-network structural analysis allowed for a deeper understanding of these relations and the detection of essential information about the level of communication in the project under investigation, which was a basis for further discussion. The authors also stress the benefits from the approach presented and argue that it should be a starting point for effective management in the sphere of communication in construction companies.
Go to article

Authors and Affiliations

Ewelina Kania
1
ORCID: ORCID
Grzegorz Śladowski
1
ORCID: ORCID
Elżbieta Radziszewska-Zielina
1
ORCID: ORCID
Bartłomiej Sroka
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul.Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The bridge horizontal swivel system generally adopts a symmetrical structure and uses a spherical hinge structure that can adjust the rotation to complete rotation construction. Because of the complexity of railway lines under bridges, some asymmetrical horizontal swivel systems have been increasingly applied in practical engineering in recent years. This system is more suitable for areas with complex railway lines, reduces the bridge span, and provides better economic benefits. However, it is also extremely unstable. In addition, instability can easily occur under dynamic loads, such as earthquake action and pulsating wind effects. Therefore, it is necessary to study their mechanical behavior. Based on the horizontal swivel system of an 11,000-ton asymmetric continuous girder bridge, the dynamic response of the horizontal swivel system to seismic action was studied using the finite element simulation analysis method. Furthermore, using the Peer database, seismic waves that meet the calculation requirements are screened for time-history analysis and compared to the response spectrum method. The mechanical properties of the structural system during and after rotation were obtained through calculations. During rotation, the seismic response of the structure is greater. To reduce the calculation time cost, an optimization algorithm based on the mode shape superposition method is proposed. The calculation result is 87% that of the time-history analysis, indicating a relatively high calculation accuracy.
Go to article

Authors and Affiliations

Jiawei Wang
1
ORCID: ORCID
Hongshuai Gao
2
ORCID: ORCID
Kexin Zhang
3
ORCID: ORCID
Zongyun Mo
1
ORCID: ORCID
Hongchun Wang
1
ORCID: ORCID

  1. Anhui Polytechnic University, School of Architecture and Civil Engineering, Wuhu City, Beijing Middle Road, China
  2. Heilongjiang University, College of Civil Engineering, Harbin City, Xuefu Road, China
  3. Shenyang Jianzhu University, School of Architecture and Civil Engineering, Shenyang City, Hun Nan Road, China
Download PDF Download RIS Download Bibtex

Abstract

The implementation of public-private partnerships has become one of the effective models of cooperation between the public and private sectors in the development of infrastructure in Vietnam. This model has been adopted in Vietnam for many years and is intended to help governments build infrastructure and provide an opportunity to reduce government debt profiles. This study aims to identify the most critical factors that could determine the success of these projects. A questionnaire was conducted based on the participants’ experience in the implementation of public-private partnerships projects and a total of 216 respondents were received. A regression analysis shows that six critical success factors, including factors relevant to public sector, factors relevant to private sector, factors relevant to selected process partnerships, factors relevant to risk management systems, factors relevant to project information, and factors relevant to natural environment. The findings indicated that the most effective development projects could be carried out via PPPs if the government could focus on these important factors in the implementation process. The results will influence political development towards PPP and guide partners in developing public-private partnerships projects.
Go to article

Authors and Affiliations

Nguyen Quoc Toan
1
ORCID: ORCID
Dinh Tuan Hai
2
ORCID: ORCID

  1. Hanoi University of Civil Engineering, Faculty of Construction Economics and Management, No. 55 Giai Phong Street, Hai Ba Trung District, Hanoi, Vietnam
  2. Hanoi Architectural University, Faculty of Civil Engineering, Km 10, Nguyen Trai Street, Thanh Xuan District, Hanoi City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The demands placed on industry today are increasingly challenging and demanding. To meet these challenges, designers, contractors, and technology managers are constantly looking for effective solutions. Industry has always thrived on new technologies and innovations to achieve better results, so it is critical to undertake new developmental research to simulate and test new technological proposals. In this paper, the author describes a new direction in civil engineering technology that interdisciplinary couples solutions known to the bridge industry with geotechnical aspects in the technology space and the possibility of implementation in the construction industry. The author proposes the application of prestressing together with technological aspects of this solution to diaphragm walls, which are not only a temporary housing but also the foundations of a new investment. Thanks to this solution it is possible, among other things, to resign from one level of diaphragm expansion of diaphragm walls, which translates into cost optimization. It is an innovative approach to designing and most of all constructing the load-bearing structure, which directly influences the technological optimization of selected issues of completing the underground parts of the investment. Additionally, the presented solution contributes to the balanced execution of the investment by reducing the use of materials and construction equipment. The author discusses technological, execution and implementation problems related to the application of innovative solutions in construction companies together with examples of cost optimization. The author presents the results of conducted research with application of the proposed solution in the implementation of the underground commercial investment.
Go to article

Authors and Affiliations

Mateusz Frydrych
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests of SCB (semi-circular beam) samples of asphalt concrete, subjected to the destructive effect of water and frost as well as the aging processes. The determined values of material parameters show significant dispersions, which makes the design of mixtures difficult. Statistical analysis of the test results supplemented by computer simulations made with the use of the proprietary FEM model was carried out. The main distinguishing feature of the model is the assignment of material parameters of coarse aggregate and bituminous mortar to randomly selected finite elements. The parameters of the mortar are selected by trial and error to match the numerical results to the experimental ones. The stiffness modulus of the bituminous mortar is, therefore, a substitute parameter, taking into account the influence of many factors, including material degradation resulting from the aging and changing environmental conditions, the influence of voids, and contact between the aggregate and the bituminous mortar. The use of the Monte Carlo method allows to reflect the scattering of the results obtained based on laboratory tests. The computational algorithm created in the ABAQUS was limited only to the analysis of the global mechanical bending response of the SCB sample, without mapping the failure process in detail. The combination of the results of laboratory tests usually carried out on a limited number of samples and numerical simulations provide a sufficiently large population of data to carry out a reliable statistical analysis, and to estimate the reliability of the material designed.
Go to article

Authors and Affiliations

Cezary Szydłowski
1
ORCID: ORCID
Łukasz Smakosz
2
ORCID: ORCID
Marcin Stienss
1
ORCID: ORCID
Jarosław Górski
2
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Highway and Transportation Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  2. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents modelling using artificial neural networks (ANN) of the phenomenon of creep of comply polymer SIKA PS which can be used in various applications in civil engineering. Data for modelling was gathered in compressive experiments conveyed under a set of fixed conditions of compressive stress and temperature. Part of the datawas pre-processed by smoothing and rediscretisation and served as inputs and targets for network training and part of the data was left raw as control set for verification of prognosing capability. Assumed neural network architectures were one- and two-layer feedforward networks with Bayesian regularisation as a learning method. Altogether 55 networks with 8 to 12 neurons in varying structural configurations were trained. Fitting and prognosing verification was performed using mean absolute relative error as a measure; also, results were plotted and assessed visually. In result, the research allowed for formulation of a new rheological model for comply polymer SIKA PS in time, stress and temperature field domain with fitting quality of mean absolute relative error 1.3% and prognosis quality of mean absolute relative error 8.73%. The model was formulated with the use of a two-layer network with 5+5 neurons.
Go to article

Authors and Affiliations

Anna M. Stręk
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Standard PN-EN 1992-1-1 for designing reinforced concrete structures gives a major priority to the issues relating to second-order effects, but presents in detail only two approximate calculation methods: the nominal stiffness method and the nominal curvature method. As regards the general method, only certain requirements and suggestions are provided. In typical situations, when the appropriate assumptions are satisfied, the approximate methods yield satisfactory results. However, in engineering practice one can come across several cases (e.g. very tall columns, columns with a cantilever for a gantry girder, and floor joists) in which the approximate methods will prove unreliable. This paper presents and discusses a procedural algorithm for analysing second-order effects using the general method. The algorithm is employed to perform exemplary calculations and their results are compared with the results yielded by the approximate methods commonly used by engineers. Moreover, areas in which the approximate methods can be unreliable are indicated. The analyses have confirmed the significant advantage of the general method over the approximate methods. Therefore it is worth popularizing this method, the more so that its calculation procedures can be to a large extent automated and dedicated computer programs can be developed.
Go to article

Authors and Affiliations

Janusz Pędziwiatr
1
ORCID: ORCID
Michał Musiał
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presented analysis concerns deflections of the reinforced concrete slab in the fire-fighting water storage tank with volume of 950 m3. It was built on human-altered soil which led to deflection of the tank. When water was pumped out from the tank, rectification was performed. The tank and its slab foundation were non-uniformly elevated by means of hydraulic jacks. These jacks were installed under the slab, on foundation made of concrete block stacks, which were pressed into the ground. The computational analysis was conducted for displacements and deflections of the slab supported on the jacks. The number of jacks under the slab and stiffness of jack supports on the stacks were the variable parameters of the model. Stiffness of the jack supports was found to have non-significant impact on deflections of the foundation slab of the rectified tank. On the other hand, the number of jacks under the tank affected both deflections of the slab and displacements of the whole tank. The greatest deflection of the tank slab supported on three jacks was 15.233 mm, and the smallest one was 10.435 mm at 32 jacks.
Go to article

Authors and Affiliations

Krzysztof Gromysz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The historical past of a building has a key influence on the variability of geotechnical conditions. These conditions change with a modification of the structural system, a change in function or only architectural elements (fashionable in a given period). In the article, various geotechnical and geophysical surveys are described, which led to a discovery of potential causes of a structural failure at historical Castle of Dukes of Pomerania in Szczecin. The investigation resulted in a discovery of an underground tunnel system constructed under the Castle, which existence was only suspected. The tunnels were constructed primarily during II World War, but also before that period. The article summarizes facts discovered due to investigation as well as historical and geological background related to the execution of the reinforced concrete and masonry tunnels. The lesson learned resulting from this discovery is that great care should be taken when historical areas are considered, even if the structure seems to be massive and robust.
Go to article

Authors and Affiliations

Tomasz Godlewski
1
ORCID: ORCID
Radosław Mieszkowski
2
ORCID: ORCID
Maciej Maślakowski
3
ORCID: ORCID

  1. Building Research Institute, 21 Ksawerów St., 02-656 Warsaw, Poland
  2. Warsaw University, Geology Department, 93 Zwirki i Wigury St., 02-089 Warsaw, Poland
  3. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, based on the feasible method and sensors for the full-scale prestressed monitor, the novel optical fiber sensors and the traditional monitoring sensors will be set up into two prestressed concrete beams with the same geometrical dimensions, material properties, and construction conditions, etc. to investigate the working state of the novel sensors and obtain the evolution law of prestress loss of the prestressed feature component under the static load. The results show that the evolution law of prestress loss of the loaded beam under the condition of no damage state and initial crack is the same as the non-loaded one; however, the prestress loss increases with the increase of time under the situation with the limit crack. The total loss of the prestressed beam with the limit crack is 36.4% without damage. The prestress loss of the prestressed beam under the static load increase with the development of the crack (injury).
Go to article

Authors and Affiliations

Jinbo Wang
1
ORCID: ORCID
Guodong Li
1
ORCID: ORCID
Chunguang Lan
2
ORCID: ORCID
Nan Guo
1
ORCID: ORCID

  1. Northeast Forestry University, School of Civil Engineering, Al. Harbin City, Heilongjiang Province, China
  2. Beijing Building Construction Research Institute Co., Ltd, A1. Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

In the research of long-time operating road bridge superstructures, it should note that when the internal forces in the beam elements reach specific values, the stiffness of the cross-section of these elements should decrease. Besides that, if there are damaged places in the beam-element of the road bridge superstructures, the element could not work normally, and the redistribution of internal forces between elements in the whole system would happen. This phenomenon was not taken into account in the initial design calculation. In practice, it shows that many road bridges are subjected to greater loads than the calculated loads in the design process, but they still normally operate. This article proposes the other limit state criteria in evaluating the load capacity reserve of road-bridge superstructures using nonlinear analysis based on nonlinear deformational models of modern construction codes. The proposed calculation procedure is established to explain the load capacity reserve of long-time operating road bridge superstructures in the case of the lack of experimental evaluation. From the obtained results, the suitable limit state criteria for road bridge superstructures are suggested, and the conclusions about the accuracy of the proposed approach of nonlinear structural analysis are recommended.
Go to article

Authors and Affiliations

Thuy Van Tran Thi
1
ORCID: ORCID
Quyen Vu Thi Bich
1
ORCID: ORCID

  1. Hanoi Architectural University, Faculty of Civil Engineering, Km.10 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

This article discusses in a simplified manner how to use the multiple functions of the Geographic Information System (GIS) to support the engineering decision for vital and important sites that require the decision-maker to have a high degree of certainty, such as the decision related to choosing the best location for the airport among several sites. This paper aims to provide a practical model that allows for a decision support system on how to adopt a GIS software by both its part Arc-Map and Arc-Catalog combined with analytic hierarchy process (AHP) method to make strategic decisions by spatial and non-spatial analysis to choose the appropriate site for the project as those related to choosing an airport location. Nineteenth criteria were considered to analyze the study area which is represented by three governorates of the middle Euphrates region in Iraq, Babil, Kerbala, and AL-Najaf. Finally, the research presented a practical and efficient approach for the decision maker to select the appropriate location for the airport based on the value of the highest suitability index.
Go to article

Authors and Affiliations

Ali Kadhim Manea
1
ORCID: ORCID

  1. Civil Engineering Department, University of Babylon, Babylon, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

A quantitative study is performed to determine the performance degradation of Y-shaped reinforced concrete bridge piers owing to long-term freeze-thaw damage. The piers are discretized into spatial solid elements using the ANSYS Workbench finite element analysis software, and a spatial model is established. The analysis addresses the mechanical performance of the piers under monotonic loading, and their seismic performance under low-cycle repeated loading. The influence of the number of freeze-thaw cycles, axial compression ratio, and loading direction on the pier bearing capacity index and seismic performance index is investigated. The results show that freeze-thaw damage has an adverse effect on the ultimate bearing capacity and seismic performance of Y-shaped bridge piers in the transverse and longitudinal directions. The pier peak load and displacement ductility coefficient decrease with increasing number of freeze-thaw cycles. The axial compression ratio is an important factor that affects the pier ultimate bearing capacity and seismic performance. Upon increasing the axial compression ratio, the pier peak load increases and the displacement ductility coefficient decreases, the effects of which are more significant in the longitudinal direction.
Go to article

Authors and Affiliations

Yanfeng Li
1
ORCID: ORCID
Jialong Li
1
Tianyu Guo
1
ORCID: ORCID
Tongfeng Zhao
2
Longsheng Bao
3
ORCID: ORCID
Xinglong Sun
1

  1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  2. Liaoning Provincial College of Communications, Liaoning Bridge Safety Engineering Research Center, Shenyang 110168, China
  3. School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China

This page uses 'cookies'. Learn more