Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, in addition to the thermodynamic properties of refrigerants, their impact on the environment is of high significance. Hence, it is important to use refrigerants with the lowest possible values of ozone depletion potential and global warming potential indices in refrigeration, organic Rankine cycle (ORC), air conditioning, and heat pump systems. Natural refrigerants are the most environmentally friendly; unfortunately, they have less favourable thermodynamic properties. Currently, low-pressure refrigerants from the FC (fluorocarbons, fluorine liquids) and HFE (hydrofluoroether) groups are increasingly used. This paper presents the most important properties and applications of selected refrigerants from these groups and also reviews the literature on their use.
Go to article

Authors and Affiliations

Małgorzata Sikora
1
Tadeusz Bohdal
1

  1. Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes the experimental analysis of heat transfer and friction factor for glass protected three-side artificially roughened rectangular duct solar air heaters (SAHs) having an arrangement of multiple-v and transverse wires (top wall multi-v and two side walls transverse) under the absorber plate, and compares their performance with that of one-side roughened solar air heaters under similar operating conditions. The investigated three-side solar air heaters are characterized by a larger rate of heat transfer and friction factor as compared to one-side artificially roughened SAHs by 24–76% and 4–36%, respectively, for the identical operating parameters. The air temperature below the three-side rugged duct is by 34.6% higher than that of the one-side roughened duct. Three-side solar air heaters are superior as compared to one-side artificially roughened solar air heaters qualitatively and quantitatively both.
Go to article

Authors and Affiliations

Dhananjay Kumar
1

  1. B.A. College of Engineering and Technology, Ghutia, P.O. Barakhurshi Jamshedpur, Jharkhand 832304, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of an experimental study and
mathematical modeling of the effect of dynamic instabilities on the condensation phase transformation of the refrigerants homogeneous R134a and its replacement in the form of isomers R1234yf and R1234ze and R404A or R507 and R448A in pipe mini-channels. In the case of homogeneous chlorofluorocarbons (CFCs), it is the 1234 isomers that are envisioned as substitutes for the withdrawn ones with high ozone depletion potential and global warming potential. For zeotropic and azeotropic mixtures, for example, these are R507 or R448A. The paper presents a dimensional analysis procedure based on the Buckingham Π theorem to develop a regression velocity model of pressure dynamic instabilities. The experimental part of the work was carried out with the use of tubular mini-channels with internal diameter 1.40–3.3 mm.
Go to article

Authors and Affiliations

Waldemar Kuczyński
1

  1. Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Power Engineering, Racławicka 15-17, 75-625 Koszalin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper is concerned with the rotational motion of the impeller and the thermal buoyancy within a mechanical mixer. The task was investigated numerically using the ANSYS-CFX simulator. The programmer is based on the finite volume method to solve the differential equations of fluid motion and heat transfer. The impeller has hot surfaces while the vessel has cold walls. The rotational movement of the impeller was controlled by the Reynolds number, while the intensity of the thermal buoyancy effect was controlled by the Richardson number. The equations were solved for a steady flow. After analyzing the results of this research, we were able to conclude that there is no effect of the values of Richardson number on the power number. Also, with the presence of the thermal buoyancy effect, the quality of the fluid mixing becomes more important. The increasing Richardson number increases the value of the Nusselt number of the impeller.
Go to article

Authors and Affiliations

Souad Hassouni
1
Houssem Laidoudi
2
Oluwole Daniel Makinde
3
Mohamed Bouzit
2
Boumediene Haddou
1

  1. University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Chemistry, BP 1505, El-Menaouer, Oran, 31000, Algeria
  2. University of Science and Technology of Oran Mohamed-Boudiaf, Laboratory of Sciences and Marine Engineering, Faculty of Mechanica lEngineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  3. Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha 7395, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of numerical and analytical investigations of the influence of raw liquid natural gas (LNG) composition on parameters characterizing the combustion process. The high content of higher hydrocarbons influences the thermodynamic combustion process described with parameters like the adiabatic flame temperature, laminar flame speed and ignition delay time. A numerical study of the impact of LNG fuels on emission characteristics using the Cantera code has been performed. Results have shown that the change of grid natural gas to some types of liquid natural gas can result in an incomplete combustion process and an increase of emission of toxic compounds such as carbon monoxide and unburned hydrocarbons. For all investigated fuels the laminar flame speed rises by about 10% compared to natural gas, while the adiabatic flame temperature is nearly the same. The ignition delay time is decreased with an increase of ethane share in the fuel. The analysis of chemical pathways has shown that hydrogen cyanide and hydrogen formation is present, particularly in the high temperature combustion regimes, which results in an increase of nitric oxide molar fraction in flue gases by even 10% compared to natural gas. To summarize, for some applications, liquid natural gases cannot be directly used as interchangeable fuels in an industry sector, even if they meet the legal requirements.
Go to article

Authors and Affiliations

Paweł Czyżewski
1
Rafał Ślefarski
1
Joanna Jójka
1

  1. Poznan University of Technology, Institute of Thermal Energy, Piotrowo 3a, 60-965, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

A numerical model of the high-speed train carriage fire is established in this study. The influence of ceilings, sidewalls, luggage racks, seats, and floors on the heat release rate (HRR) of the high-speed train is studied by numerical methods. The results indicate that the heat release rate per unit area (HRRPUA) of ceiling and seat material dramatically influences the peak HRR and the time to peak HRR of train carriage fire. When the peak HRRPUA of interior ceiling material 1 decreases from 326 to 110 kW/m2, the peak HRR of the high-speed train fire decreases from 36.4 to 16.5 MW, with a reduction ratio of 54.7%. When seat materials with low HRRPUA are used, the peak HRR reduction ratio is 44.8%. The HRRPUA of the sidewall, luggage rack, and floor materials has little effect on the peak HRR of the carriage fire. However, the non-combustible luggage rack can delay the time when the HRR reaches its peak.
Go to article

Authors and Affiliations

Yuanlong Zhou
1
Haiquan Bi
2
Honglin Wang
2

  1. University of Science and Technology of China, State Key Laboratory of Fire Science, Hefei, Anhui 230026, China
  2. Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China
Download PDF Download RIS Download Bibtex

Abstract

In view of the high cost and difficulty of ensuring the accuracy in the measurement of fire smoke velocity, the measurement system developed using platinum resistance temperature detectors and an 8-bit microcontroller, is used to realize the fast measurement of high-temperature fire smoke velocity. The system is based on the thermodynamic method and adopts the Kalman filter algorithm to process the measurement data, so as to eliminate noise and interference, and reduce measurement error. The experimental results show that the Kalman filter algorithm can effectively improve the measurement accuracy of fire smoke velocity. It is also shown that the system has high measurement accuracy, short reaction time, low cost, and is characterized by high performance in the measurement of high-temperature smoke velocity in experiments and practice.
Go to article

Authors and Affiliations

Haoyu Wang
1

  1. Department of Fire Engineering, China Fire and Rescue Institute, Nanyan 4, Changping District, 102202, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

The purposes of this study were to investigate the impact of proportions of cast iron scrap, steel scrap, carbon and ferro silicon on hardness and the quality of cast iron and to obtain an appropriate proportion of the four components in iron casting process using a mixture experimental design, analysis of variance and response surface methodology coupled with desirability function. Monte Carlo simulation was used to demonstrate the impacts of different proportions of the four components by varying the proportions of components within ±5% of the four components. Microstructures of the cast iron sample obtained from a company and the cast iron samples casted with the appropriate proportions of the four components were examined to see the differences of size and spacing of pearlite particle. The results showed that linear mixture components were statistically significant implying a high proportion of total variability for hardness of the cast iron samples explained by the casting mixtures of raw materials. The graphite of the sample casted from the appropriate proportion has shorter length and more uniform distribution than that from the company. When varying percentages of the four components within ±5% of the appropriate proportion, simulated hardness values were in the range of 237 to 256 HB.
Go to article

Authors and Affiliations

C. Saikaew
1
ORCID: ORCID
S. Harnsopa
1

  1. Department of Industrial Engineering, Khon Kaen University, Khon Kaen 40002 Thailand
Download PDF Download RIS Download Bibtex

Abstract

This paper identifies and describes the parameters of a numerical model generating the microstructure in the integrated heating-remelting-cooling process of steel specimens. The numerical model allows the heating-remelting-cooling process to be simulated comprehensively. The model is based on the Monte Carlo (MC) method and the finite element method (FEM), and works within the entire volume of the steel sample, contrary to previous studies, in which calculations were carried out for selected, relatively small areas. Experimental studies constituting the basis for the identification and description of model parameters such as: probability function, initial number of orientations, number of cells and number of MC steps were carried out using the Gleeble 3800 thermo-mechanical simulator. The use of GPU capabilities improved the performance of the numerical model and significantly reduced the simulation time. Thanks to the significant acceleration of simulation times, it became possible to comprehensively implement a numerical model of the heating-transformation-cooling process in the entire volume of the test sample. The paper is supplemented by results of performance tests of the numerical model and results of simulation tests.
Go to article

Authors and Affiliations

Marcin Hojny
Przemysław Marynowski
ORCID: ORCID
Tomasz Dębiński
ORCID: ORCID
D. Cedzidło
1
ORCID: ORCID

  1. AGH University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

A brief description of the innovative mathematical method for the prediction of CET – localization in solidifying copper and copper alloys’ ingots is presented. The method is to be preceded by the numerical simulation of both temperature field and thermal gradient filed. All typical structural zones were revealed within the copper and copper alloys’ massive ingots or rods manufactured by continuous casting. The role of thermal gradient direction for the single crystal core formation has been enlightened. The definition for the index describing proportion between volume fraction of the columnar structure and volume fraction of the equiaxed structure has been formulated by means of the interpretation of some features of the liquidus isotherm velocity course. An attempt has been undertaken to apply the developed mathematical method for the structural zones prediction in the rods solidifying under industrial conditions. An industrial application has been shown, that is, it was explained why the innovative rods should be assigned to the overhead conductors in the electric tractions.
Go to article

Authors and Affiliations

P. Kwapisiński
1
ORCID: ORCID
W. Wołczyński
2
ORCID: ORCID

  1. KGHM Polska Miedź S.A., M. Skłodowskiej-Curie 48, 59-301 Lubin, Poland
  2. Institute of Metallurgy and Materials Science, W. Reymonta 25, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The river system of the Bengal delta encompasses a huge amount of fluvial sand; however, no comprehensive studies were available on using this river sand in foundry industries. Hence, the present research evaluates the foundry properties of trans-boundary Brahmaputra River sand and its prospects for use in foundries. Several laboratory analyses have been performed to elicit the foundry properties using standard methods of foundry analysis, including XRD, XRF, TG-DSC, and FESEM. From the study, the sand contains mainly quartz with small amounts of feldspar, amphibole, chlorite, and mica, and exhibits a subangular to subrounded shape. The sand is dominated by SiO2 (67.81–69.97%) and lesser amounts of other oxides, and it is thermally stable within 1000 °C temperature. The grain fineness number (64–79), mineralogical, chemical, thermal, and foundry properties are suitable for non-ferrous metal casting without distortion. Further, the aluminum and zinc alloy casting with trials demonstrate their potential for use in the foundry industries. The outcomes of this study thus offer valuable information about utilizing Brahmaputra River sand for foundry applications.
Go to article

Authors and Affiliations

Md. Shohel Rana
1
ORCID: ORCID
Md. Shams Shahriar
1
ORCID: ORCID
Md. Sha Alam
1
ORCID: ORCID
Md. Imam Sohel Hossain
1
ORCID: ORCID
Pradip Kumar Biswas
1
ORCID: ORCID
Mohammad Nazim Zaman
1
ORCID: ORCID

  1. Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effects of electrical discharge machining (EDM) on the chemical composition and microstructure of cast Alnico alloys, i.e., iron-based alloys composed of aluminum, nickel and cobalt. The experiments focused on determining the chemical composition of the surface layer before and after the EDM process. The microstructure of the material altered by the EDM was also examined. The study included measurement of the thickness of the white layer characteristic of EDM. It is evident that low values of the surface roughness parameters can be obtained by correctly selecting the EDM process parameters. The average surface roughness reported in the experiments was 1 μm. The surface roughness measurements were conducted with a Talysurf CCI lite non-contact profiler. The metrological results also indicate that lower surface roughness can be obtained at small discharge energies.
Go to article

Authors and Affiliations

D. Bańkowski
1
ORCID: ORCID
P. Młynarczyk
1
ORCID: ORCID
B. Szwed
1
ORCID: ORCID

  1. Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a case study on the effectiveness of photovoltaic farm and battery energy storage in one of the Polish foundries. In the study, we consider two investment options: stand-alone PV farm of 1MWp and the farm together with battery energy storage with a maximum capacity of 4MWh. The Payback Period and Net Present Value were used as measures of investment profitability. The paper provides a detailed presentation of the assumptions made, as well as the PV electricity production model of the farm and the optimization model that determines the operation cycle of the energy storage. The case study presented in the article shows that the PV farm is economically sensible and profitable, but the battery energy storage is too costly to give a positive economic effect. Energy storage is an important element that provides flexibility in the energy supply system, so it is necessary to find a technical solution that gives this flexibility. Such a solution could be a virtual power plant, which could include a foundry energy system with a RES installation inside.
Go to article

Authors and Affiliations

A. Stawowy
1
ORCID: ORCID
R. Wrona
2
M. Sawczuk
2
D. Lasek
2

  1. AGH University of Science and Technology, Faculty of Management, Poland
  2. Modus Sp. z o.o., Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the most important causes of the unstable connection between cast iron ring inserts and the silumin casting of an engine piston. It is shown that manufacturing defects are mainly related to the alfin processing of inserts in Al-Si alloy (the so-called AS9 alloy). Exceeding the permissible iron content in AS9 alloy causes the crystallization of brittle -Al5FeSi phases. Their unfavorable morphology and large size are the main reasons for the weakening of the diffusion connection between the inserts and the piston, causing an unacceptable proportion of defective products. The study presented in this work was conducted under industrial conditions on a population of 10.000 pistons. Quality control data, production parameters, as well as the micro- and macro-structures of the cast iron inserts, and the interface area between the inserts and the silumin piston, were analyzed. Material and technological solutions have been proposed to reduce the occurrence of casting defects at the insert-piston joint. This includes the introduction of so-called "morphological correctors" of the -Al5FeSi phases, reducing the possibility of gaseous impurities in the AS9 alloy and optimizing the temperature of the alfin alloy.
Go to article

Authors and Affiliations

M. Szucki
1
ORCID: ORCID
J. Piątkowski
2
ORCID: ORCID
M. Czerepak
3

  1. Foundry Institute, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4,09599 Freiberg, Germany
  2. Department of Material Technologies, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  3. Federal-Mogul Gorzyce sp. z o.o., Odlewników 52, 39-432 Gorzyce, Poland

This page uses 'cookies'. Learn more