Search results

Filters

  • Journals

Search results

Number of results: 641
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Accurate force and torque calculations are fundamental to being able to predict the operation of an electromechanical device or system. The Maxwell stress tensor and the virtual work principle are the two major theories for force and torque calculation. However, if local distributions of torque are needed to couple to structural and vibration analyses, the conventional Maxwell stress approach cannot provide this easily. A recently developed approach based on sensitivity analysis has the capability to deliver local stress and torque as well as accurate global results. In addition, this approach divides the total torque into different components which are essential to the design of electrical devices. This paper includes several numerical examples of torque calculations of different electrical machines. The results are verified by a commercial software package using the Maxwell stress based force calculation.

Go to article

Authors and Affiliations

M. Li
D. Lowther
Download PDF Download RIS Download Bibtex

Abstract

In order to explore creativity in design, a computational model based on Case-Based Reasoning (CBR) (an approach to employing old experiences to solve new problems) and other soft computing techniques from machine learning, is proposed in this paper. The new model is able to address the four challenging issues: generation of a design prototype from incomplete requirements, judgment and improvement of system performance given a sparse initial case base library, extraction of critical features from a given feature space, adaptation of retrieved previous solutions to similar problems for deriving a solution to a given design task. The core principle within this model is that different knowledge from various level cases can be explicitly explored and integrated into a practical design process. In order to demonstrate the practical significance of our presented computational model, a case-based design system for EM devices, which is capable of deriving a new design prototype from a real-world device case base with high dimensionality, has been developed.

Go to article

Authors and Affiliations

Jun Ouyang
David Lowther
Download PDF Download RIS Download Bibtex

Abstract

The ability of case-based reasoning systems to solve new problems mainly depends on their case adaptation knowledge and adaptation strategies. In order to carry out a successful case adaptation in our case-based reasoning system for a low frequency electromagnetic device design, we make use of semantic networks to organize related domain knowledge, and then construct a rule-based inference system which is based on the network. Furthermore, based on the inference system, a novel adaptation algorithm is proposed to derive a new device case from a real-world induction motor case-base with high dimensionality.

Go to article

Authors and Affiliations

Jun Ouyang
David Lowther
Download PDF Download RIS Download Bibtex

Abstract

The magnetic field due to a permanent magnet of a tube-side segment as shape and of radial-oriented magnetization is considered. Such a sheet modelling a single pole of the magnet is used to express the suitable contribution to magnetic quantities. A boundary-integral approach is applied that is based on a virtual scalar quantity attributed to the magnet pole. Such an approach leads to express analytically the scalar magnetic potential and the magnetic flux density by means of the elliptic integrals. Numerical examples of the computed fields are given. The general idea of the presented approach is mainly directed towards designing the magnetic field within the air gap of electric machines with permanent magnets as an excitation source. Other technical structures with permanent magnets may be a subject of this approach as well.

Go to article

Authors and Affiliations

Krystyn Pawluk
Renata Sulima
Download PDF Download RIS Download Bibtex

Abstract

Novel method of space-vector-based pulsewidth modulation (PWM) has been disseminated for synchronous control of four inverters feeding six-phase drive based on asymmetrical induction motor which has two sets of windings spatially shifted by 30 electrical degrees. Basic schemes of synchronized PWM, applied for control of four separate voltage source inverters, allow both continuous phase voltages synchronization in the system and required power sharing between DC-sources. Simulations show a behavior of six-phase system with continuous and discontinuous versions of synchronized PWM.

Go to article

Authors and Affiliations

Valentin Oleschuk
Gabriele Grandi
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with an inverse magnetostatic problem related to the reconstruction of a permanent magnet encapsulated inside the cathode of a magnetron sputtering device. The numerical analysis is aimed to obtain the estimation of a short solenoid equivalent to the unknown magnet. Least squares approach has been used to solve the functional defined as squared sum of the residuals. A comparison of the results obtained with Genetic Algorithm approach and nonlinear system of equations is performed. A regularized solution, which is in good agreement with the experimental data, was found by applying a Newton adapted regularization technique.

Go to article

Authors and Affiliations

O. Miron
D. Desideri
D.D. Micu
A. Maschio
A. Ceclan
L. Czumbil
Download PDF Download RIS Download Bibtex

Abstract

Permanent magnet (PM) excited synchronous machines used in modern drives for electro-mobiles suffer in high speed regions from the limited battery-voltage. The field weakening requires designing machines with reduced power conversion properties or increasing the size of the power converter. A new concept of such a machine features PM excitation, single-tooth winding and an additional circumferential excitation coil fixed on the stator in the axial center of the machine. By the appropriate feeding of this coil, the amplitude of the voltage effective excitation field can be varied from zero to values above those of the conventional PM-machines. The capability of reducing the excitation field to zero is an important safety aspect in case of failing of the feeding convertor.

Go to article

Authors and Affiliations

H. May
R. Palka
P. Paplicki
S. Szkolny
W.-R. Canders
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the inverse problem associated to 3D crack identification inside a conductive material using eddy current measurements. In order to accelerate the time-consuming direct optimization, the reconstruction is provided by the minimization of a last-square functional of the data-model misfit using space mapping (SM) methodology. This technique enables to shift the optimization burden from a time consuming and accurate model to the less precise but faster coarse surrogate model. In this work, the finite element method (FEM) is used as a fine model while the model based on the volume integral method (VIM) serves as a coarse model. The application of the proposed method to the shape reconstruction allows to shorten the evaluation time that is required to provide the proper parameter estimation of surface defects.

Go to article

Authors and Affiliations

Piotr Putek
Guillaume Crevecoeur
Marian Slodička
Konstanty Gawrylczyk
Roger van Keer
Luc Dupré
Download PDF Download RIS Download Bibtex

Abstract

In this paper the application of so called wedge functions is presented to solve two-dimensional simple geometries of magnetostatic and electrostatic problems, e.g. rectangles of varying aspect ratio and with different values of the magnetic permeability μ. Such problems require the use of surface charge density, or segment source, functions of the form ρs = σa-1, where the power parameters, a, have special fractional values. A methodology is presented to determine these special values of a and use them in segment sources on simple geometries, i.e. rectangles of varying aspect ratio, and with different values of the magnetic permeability μ. Wedge solutions are obtained by coupling the strength coefficients of source segments of the same power around an edge. These surface source functions have been used in the analysis of conducting and infinite permeability structures. Here we apply such functions in a boundary integral analysis method to problems having regions of finite permeability.

Go to article

Authors and Affiliations

Ernst Huijer
Sami Karaki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents descriptions of bridge disintegration types and contact mass loss in the bridge stage. There is presented Matlab solvers to solve equation describing dynamic changes of temperature in the bridge region. The final result of program calculations is the mass loss and the volume of the metal of contacts which was lost during the bridge stage.

Go to article

Authors and Affiliations

Piotr Borkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of optimisation results of power system stabilizer (PSS) parameters when taking into account the uncertainty of mathematical model parameters of the power system (PS) elements. The Pareto optimisation was used for optimisation of the system stabilizer parameters. Parameters of five stabilizers of PSS3B type were determined in optimisation process with use of a genetic algorithm with tournament selection. The results obtained were assessed from the point of view of selecting the criterion function. The analysis of influence of the parameter uncertainty on the quality of the results obtained was performed.

Go to article

Authors and Affiliations

Adrian Nocoń
Stefan Paszek
Download PDF Download RIS Download Bibtex

Abstract

Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The article introduced some expressions for self- and mutual slot leakage inductance of phase windings for the mathematical model of an induction machine in the natural phase coordinate system and for dq0 model and in an arbitrary coordinate frame. Calculation of self- and mutual slot leakage inductance have been performed for threephase double-layer, delta and delta-modified winding connections. Introduced expressions may be useful in the design of windings and in the analysis of dynamic states of AC electrical machines.

Go to article

Authors and Affiliations

Jan Staszak
Download PDF Download RIS Download Bibtex

Abstract

Department of Electrical Engineering, Anna University Regional Centre, Coimbatore, India This paper presents a new approach to solve economic load dispatch (ELD) problem in thermal units with non-convex cost functions using differential evolution technique (DE). In practical ELD problem, the fuel cost function is highly non linear due to inclusion of real time constraints such as valve point loading, prohibited operating zones and network transmission losses. This makes the traditional methods fail in finding the optimum solution. The DE algorithm is an evolutionary algorithm with less stochastic approach to problem solving than classical evolutionary algorithms.DE have the potential of simple in structure, fast convergence property and quality of solution. This paper presents a combination of DE and variable neighborhood search (VNS) to improve the quality of solution and convergence speed. Differential evolution (DE) is first introduced to find the locality of the solution, and then VNS is applied to tune the solution. To validate the DE-VNS method, it is applied to four test systems with non-smooth cost functions. The effectiveness of the DE-VNS over other techniques is shown in general.

Go to article

Authors and Affiliations

J. Jasper
T. Aruldoss Albert Victoire
Download PDF Download RIS Download Bibtex

Abstract

Transmission of the electric power is accompanied with generation of low –frequency electromagnetic fields. Electromagnetic compatibility studies require that the fields from sources of electric power be well known. Unfortunately, many of these sources are not defined to the desired degree of accuracy. This applies e.g. to the case of the twisted-wire pair used in telephone communication; already practiced is twisting of insulated high-voltage three phase power cables and single-phase distribution cables as well. The paper presents a theoretical study of the calculation of magnetic fields in vicinity of conductors having helical structure. For the helical conductor with finite length the method is based on the Biot-Savart law. Since the lay-out of the cables is much more similar to a broken line than to strait line, in the paper the magnetic flux densities produced by helical conductor of complex geometry are also derived. The analytical formulas for calculating the 3D magnetic field can be used by a software tool to model the magnetic fields generated by e.g. twisted wires, helical coils, etc.

Go to article

Authors and Affiliations

Krzysztof Budnik
Wojciech Machczyński
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the results of correlations between air temperature and electricity demand by linear regression and Wavelet Coherence (WTC) approach for three different European countries are presented. The results show a very close relationship between air temperature and electricity demand for the selected power systems, however, the WTC approach presents interesting dynamics of correlations between air temperature and electricity demand at different time-frequency space and provide useful information for a more complete understanding of the related consumption.

Go to article

Authors and Affiliations

Samir Avdakovic
Alma Ademovic
Amir Nuhanovic
Download PDF Download RIS Download Bibtex

Abstract

The problem of improving the voltage profile and reducing power loss in electrical networks must be solved in an optimal manner. This paper deals with comparative study of Genetic Algorithm (GA) and Differential Evolution (DE) based algorithm for the optimal allocation of multiple FACTS (Flexible AC Transmission System) devices in an interconnected power system for the economic operation as well as to enhance loadability of lines. Proper placement of FACTS devices like Static VAr Compensator (SVC), Thyristor Controlled Switched Capacitor (TCSC) and controlling reactive generations of the generators and transformer tap settings simultaneously improves the system performance greatly using the proposed approach. These GA & DE based methods are applied on standard IEEE 30 bus system. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is observed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. GA and DE based algorithm is then applied to find the amount of magnitudes of the FACTS devices. Finally the comparison between these two techniques for the placement of FACTS devices are presented.

Go to article

Authors and Affiliations

B. Bhattacharyya
Sanjay Kumar
Vikash Kumar Gupta
Download PDF Download RIS Download Bibtex

Abstract

The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR) shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm) and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa) while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm) with low power consumption (from a minimum of 63 mW to a max. of 110 mW) and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

Go to article

Authors and Affiliations

Daniel Grivon
Yoan Civet
Zoltan Pataky
Yves Perriard
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is the control possibility of the multiphase cage induction motors having number of phases greater than 3. These motors have additional properties for speed control that distinguish them from the standard 3 phase motors: operation at various sequences of supplying voltages due to the inverter control and possible operation with few open-circuited phases. For each supply sequence different no load speeds at the same frequency can be obtained. This feature extends the motor application for miscellaneous drive demands including vector or scalar control. This depends mainly on the type of the stator winding for a given number of phases, since the principle of motor operation is based on co-operation of higher harmonics of magnetic field. Examples of operation are presented for a 9-phase motor, though general approach has been discussed. This motor was fed by a voltage source inverter at field oriented control with forced currents. The mathematical model of the motor was reduced to the form incorporating all most important physical features and appropriate for the control law formulation. The operation was illustrated for various supply sequences for “healthy” motor and for the motor operating at one phase broken. The obtained results have shown that parasitic influence of harmonic fields interaction has negligible influence on motor operation with respect to the useful coupling for properly designed stator winding.
Go to article

Authors and Affiliations

Piotr Drozdowski

This page uses 'cookies'. Learn more