Details
Title
Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid modelJournal title
Chemical and Process EngineeringYearbook
2011Issue
No 4 DecemberAuthors
Keywords
curvilinear bearings ; externally pressurized flow ; Rabinowitsch fluid model ; inertia effectDivisions of PAS
Nauki TechniczneCoverage
333-349Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringDate
2011Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10176-011-0027-1 ; ISSN 2300-1925 (Chemical and Process Engineering)Source
Chemical and Process Engineering; 2011; No 4 December; 333-349References
Bourging P. (1984), Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-newtonian lubricant, ASME J. Tribol, 106, 285, doi.org/10.1115/1.3260906 ; Cameron A. (1996), Basic Lubrication Theory. ; Coombs J. (1964), An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing, Proc. Inst. Mech. Engrs., London, 179, 96, doi.org/10.1243/PIME_CONF_1964_179_270_02 ; Cross M. (1965), Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, J. Colloid Sci, 20, 417, doi.org/10.1016/0095-8522(65)90022-X ; Elkouh A. (1967), Inertia effect in laminar radial flow between parallel plates, Int. J. Mech. Sci, 9, 253, doi.org/10.1016/0020-7403(67)90020-3 ; Giannikos C. (1988), Elastic bearings lubricated with non-Newtonian power law fluids - a boundary element approach, Tribology Trans, 31, 105, doi.org/10.1080/10402008808981805 ; Hanks R. (1979), The axial flow of yield—pseudoplastic fluids in a concentric annulus, Ind. Eng. Chem. Process Des. Dev, 18, 488, doi.org/10.1021/i260071a024 ; Hashimoto H. (1986), The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudoplastic fluids, ASME J. Tribol, 108, 282, doi.org/10.1115/1.3261177 ; Hsu Y. (1965), Slider bearing performance with a non-newtonian lubricant, ASLE Trans, 8, 191, doi.org/10.1080/05698196508972093 ; Hung C. (2009), Effects of non-newtonian cubic-stress flow on the characteristics of squeeze film between parallel plates, Education Specialization in 97P-009, 97, 87. ; Jurczak P. (2006), Influence of rheological parameters on the mechanical parameters of curvilinear thrust bearing with one porous wall lubricated by a couple stress fluid, Int. J. Appl. Mech. Eng, 11, 221. ; Kapur V. (1973), Energy integral approach for hydrostatic thrust bearing, Japanese J. App. Phy, 12, 1070, doi.org/10.1143/JJAP.12.1070 ; Khonsari M. (1989), On the performance of finite journal bearings lubricated with micropolar fluids, Tribology Trans, 32, 155, doi.org/10.1080/10402008908981874 ; Lin J. (1999), Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids, Tribology Int, 32, 207, doi.org/10.1016/S0301-679X(99)00034-1 ; Lin J. (2001), Non-newtonian effects on the dynamic characteristics of one dimensional slider bearings: rabinowitsch model, Tribology Letters, 10, 237, doi.org/10.1023/A:1016678208150 ; Pinkus O. (1961), Theory of hydrodynamic lubrication. ; Savins J. (1958), Generalised Newtonian (pseudoplastic) flow in stationary pipes and annuli, Trans. AIME, 213, 325. ; Serangi M. (2005), Elastohydrodynamically lubricated ball bearings with couple stress fluids, part 1: steady state analysis, Tribology Trans, 48, 404, doi.org/10.1080/05698190500225201 ; Shukla J. (1982), Effects of consistency variation of power law lubricants in squeeze films, Wear, 76, 299, doi.org/10.1016/0043-1648(82)90069-2 ; Usha R. (2000), Fluid inertia effects in a non-newtonian squeeze film between two plane annuli, Trans. ASME, 122, 872, doi.org/10.1115/1.1288928 ; Wada S. (1971), Hydrodynamic lubrication of journal bearings by pseudoplastic lubricants, Bulletin of JSME, 14, 69, 279, doi.org/10.1299/jsme1958.14.279 ; Walicka A. (2010), Pressurized flow of the Herschel-Bulkley fluid in a clearance between fixed surfaces of revolution, Chem. Process Eng, 31, 199. ; Walicka A. (2010), Inertia effects in the flow of a simple Casson fluid between two fixed surfaces of revolution, Chem. Process Eng, 30, 603.Editorial Board
Editorial Board
Ali Mesbah, UC Berkeley, USA 0000-0002-1700-0600
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland 0000-0002-2847-8992
Anna Trusek, Wrocław University of Science and Technology, Poland 0000-0002-3886-7166
Bettina Muster-Slawitsch, AAE Intec, Austria 0000-0002-5944-0831
Daria Camilla Boffito, Polytechnique Montreal, Canada 0000-0002-5252-5752
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland 0000-0002-2924-7360
Dorota Antos, Rzeszów University of Technology, Poland 0000-0001-8246-5052
Evgeny Rebrov, University of Warwick, UK 0000-0001-6056-9520
Georgios Stefanidis, National Technical University of Athens, Greece 0000-0002-4347-1350
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland 0000-0001-5378-3115
Johan Tinge, Fibrant B.V., The Netherlands 0000-0003-1776-9580
Katarzyna Bizon, Cracow University of Technology, Poland 0000-0001-7600-4452
Katarzyna Szymańska, Silesian University of Technology, Poland 0000-0002-1653-9540
Marcin Bizukojć, Łódź University of Technology, Poland 0000-0003-1641-9917
Marek Ochowiak, Poznań University of Technology, Poland 0000-0003-1543-9967
Mirko Skiborowski, Hamburg University of Technology, Germany 0000-0001-9694-963X
Nikola Nikacevic, University of Belgrade, Serbia 0000-0003-1135-5336
Rafał Rakoczy, West Pomeranian University of Technology, Poland 0000-0002-5770-926X
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong 0000-0001-7444-2678
Tom van Gerven, KU Leuven, Belgium 0000-0003-2051-5696
Tomasz Sosnowski, Warsaw University of Technology, Poland 0000-0002-6775-3766