Search results

Filters

  • Journals
  • Data

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.

Go to article

Authors and Affiliations

Alicja Przybył
Rafał Rakoczy
Maciej Konopacki
Marian Kordas
Radosław Drozd
Karol Fijałkowski
Download PDF Download RIS Download Bibtex

Abstract

The investigations deal with mass transfer in simulated biomedical systems. The modification of classical diffusion chamber, sequential unit (SU) system, imitated different biomedical setups, boundary conditions. The experiments simulated: diffusion chamber (also with two barriers), transport through the membrane to the blood stream, transport from the stent eluting drug simultaneously to the vessel cells and to the blood stream. The concentrations of substances and the relative mass increases/decreases for SU systems indicate that the order of the curves follows the order of mass transfer resistances. The strong dependence of mass transfer rates versus type of diffusing substance was confirmed. The calculated drug fluxes, diffusion coefficients, permeation coefficients are convergent with literature. Permeation coefficients for complex sequential systems can be estimated as parallel connexion of constituent coefficients. Experiments approved functionality of the SU for investigations in a simulated biomedical system. Obtained data were used for numerical verification.

Go to article

Authors and Affiliations

Anna Adach
Natalia Kister
Andrzej Skassa
Aleksandra Bugalska
Download PDF Download RIS Download Bibtex

Abstract

Results of velocity measurements of liquid and gas bubbles in a tank with a self-aspirating disk impeller are analysed. Studies were carried out using a fluorescent dye tracer in the measuring system with two cameras (simultaneous phase velocity measurement) and with one camera (sequential measurement of phase velocity). Based on a comparative analysis of the acquired data it was found that when differences in the phase velocities were small the simultaneous velocity measurement gave good results. However, sequential measurement gives greater possibilities for setting the measuring system and if the analysis of instantaneous velocities is not necessary, it seems to be a better solution.

Go to article

Authors and Affiliations

Radosław Musoski
Jacek Stelmach
Download PDF Download RIS Download Bibtex

Abstract

The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger) is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

The paper presents a model of thermal and flow processes in BHE consisting of two analytical models separately-handling processes occurring inside and outside of borehole. A quasi-three-dimensional model formulated by Zeng was used for modelling processes taking place inside the borehole and allowing to determine the temperature of the fluid in the U-tube along the axis of BHE. For modelling processes occurring outside the borehole a model that uses the theory of linear heat source was selected. The coupling parameters for the models are the temperature of the sealing material on the outer wall of the borehole and the average heat flow rate in BHE. Experimental verification of the proposed model was shown in relation to BHE cooperating with a heat pump in real conditions.

Go to article

Authors and Affiliations

Sebastian Pater
Włodzimierz Ciesielczyk
Download PDF Download RIS Download Bibtex

Abstract

The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC) design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD) tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.

Go to article

Authors and Affiliations

Zdzisław Jaworski
Paulina Pianko-Oprych
Tomasz Zinko
Download PDF Download RIS Download Bibtex

Abstract

The paper presents test results for the assessment of the tracer content in a three-component (green peas, sorghum, maize) feed mixture that is based on the fluorescent method. The homogeneity of mixtures was determined on the basis of the maize content (as the key component), which was treated with fluorescent substance: tinopal, rhodamine B, uranine and eosin. The key components were wet-treated with fluorescent substances with different concentrations. Feed components were mixed in a vertical funnel-flow mixer. 10 samples were collected from each mixed batch. Samples were placed in a chamber equipped with UV light and, then, an image recorded as BMP file was generated. The image was analysed by means of the software programme Patan. On the basis of the analyses conducted, data on the maize content marked with a fluorescent marker were obtained. Additionally, the content of the key component was determined in a conventional manner – using an analytical scale. Results indicate the possibility of using this method for homogeneity assessment of the three-component grain mixture. From these tests, fluorescent substances that can be applied in the case of maize as a key component, together with their minimum concentrations, were identified: tinopal 0.3%, rhodamine B 0.001%.

Go to article

Authors and Affiliations

Dominika B. Matuszek
Krystian Wojtkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The results of experimental investigations into foaming process of poly(ε-caprolactone) using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa), temperature (323-373 K) and time of saturation (1-6 h) on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM), x-ray microtomography (μ-CT) and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone) solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.

Go to article

Authors and Affiliations

Katarzyna Kosowska
Marek Henczka
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.

Go to article

Authors and Affiliations

Wojciech Ludwig
Daniel Zając

This page uses 'cookies'. Learn more