Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 80
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the idea of increasing the effectiveness of slag decopperisation in an electric furnace in the "Głogów II" Copper Smelter by replacing the currently added CaCO3with a less energy-intensive technological additive. As a result of this conversion, one may expect improved parameters of the process, including process time or power consumption per cycle. The incentives to optimize the process are the benefits of increasing copper production in the company and the growing global demand for this metal. The paper also describes other factors that may have a significant impact on the optimization of the copper production process. Based on the literature analysis, a solution has been developed that improves the copper production process. The benefits of using a new technology additive primarily include increased share of copper in the alloy, reduced production costs, reduced amount of power consumed per cycle and reduced time it takes to melt. At the conclusion of the paper, the issues raised are highlighted, stressing that mastering the slag slurry process in electric furnaces requires continuous improvement.

Go to article

Authors and Affiliations

M. Wędrychowicz
W. Wołczyński
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

In the present dynamic environment, manufacture are required to reduce product development

cycle time and enhance product quality. To meet such challenges many business

are developing closer relationships with their business partner through application of interorganisational

system. Electronic data interchange (EDI) providing a structured form of

communication and has become very popular vehicle for electronic communication. Since

the EDI concept was popularised in 1990, there is a growing recognition by practitioners

and academics. The aim of this study is to perform an analysis of EDI research, give the

current discussion regarding the trends and note the suggestions for the future directions

of EDI research in the manufacture. In this paper, we provide a wide coverage of excessively

citations on EDI from 1990 to 2017 from good references in this area. The papers are

classified into EDI implementation strategy, EDI adoption, EDI integration, EDI in supply

chain and EDI in small and medium enterprises (SMEs). The study results of this literature

review are expected to assist development of EDI research especially the implementation of

EDI on production outsourcing as one of supply chain activities.

Go to article

Authors and Affiliations

Rika Yunitarini
Pratikto
Purnomo Budi Santoso
Sugiono
Download PDF Download RIS Download Bibtex

Abstract

Thermal/cold spray deposition were used for additive manufacture of oxide dispersion strengthened (ODS) steel layers. Mechanically alloyed F/M ODS steel powders (Fe(bal.)-10Cr-1Mo-0.25Ti-0.35Y2O3 in wt.%) were sprayed by a high velocity oxygen fuel (HVOF) and cold spray methods. HVOF, as a thermal method, was used for manufacturing a 1 mm-thick ODS steel layer with a ~95% density. The source to objective distance (SOD) and feeding rate were controlled to achieve sound manufacturing. Y2Ti2O7 nano-particles were preserved in the HVOF sprayed layer; however, unexpected Cr2O3 phases were frequently observed at the boundary area of the powders. A cold spray was used for manufacturing the Cr2O3-free layer and showed great feasibility. The density and yield of the cold spray were roughly 80% and 45%, respectively. The softening of ODS powders before the cold spray was conducted using a tube furnace of up to 1200°C. Microstructural characteristics of the cold sprayed layer were investigated by electron back-scattered diffraction (EBSD), the uniformity of deformation amount inside powders was observed.

Go to article

Authors and Affiliations

Suk Hoon Kang
Chang-Kyu Rhee
Sanghoon Noh
Tae Kyu Kim
Download PDF Download RIS Download Bibtex

Abstract

A number of technologies is developed that substitute simple metal cores in the high-pressure casting technology. Soluble cores, namely

on the salt basis, represent the highest prospect. The contribution gives the results of the production of salt cores by high-pressure

squeezing and shooting with using a binder. Special attention is paid to the shape of NaCl salt crystals with additives and the influence on

strength properties of cores. A technology of bonding the salt cores is developing. Salinity of circulating water is studied and it is checked

with the aid of electrical conductance.

Go to article

Authors and Affiliations

P. Jelínek
J. Beňo
E. Adámková
F. Mikšovský
Download PDF Download RIS Download Bibtex

Abstract

The market of consumer goods requires nowadays quick response to customer needs. As a consequence, this is transferred to the time restrictions that the semi-finished product manufacturer must meet. Therefore the cost of manufacturing cannot determine how production processes are designed, and the main evaluation function of manufacturing processes is the response time to customers’ orders. One of the ideas for implementing this idea is the QRM (Quick Response Manufacturing) production organization system. The purpose of the research undertaken by the authors was to develop an innovative solution in the field of production structure, allowing for the implementation of the QRM concept in a Contract Manufacturer, which realizes its tasks according to engineering-to-order (ETO) system in conditions defined as High Mix, Low Volume, High Complexity. The object of the research was to select appropriate methods for grouping products assuming that certain operations will be carried out in traditional but well-organized technological and/or linear cells. The research was carried out in one of the largest producers of sheet metal components in Europe. Pre-completed groupings for data obtained from the company had indicated that – among the classical methods – the best results had been given by the following methods: King’s Algorithm (otherwise called: Binary Ordering, Rank Order Clustering), k-means, and Kohonen’s neural networks. The results of the tests and preliminary simulations based on the data from the company proved that the implementation of the QRM concept does not have to be associated with the absolute formation of multi-purpose cells. It turned out that the effect of reducing the response time to customer needs can be obtained by using hybrid structures that combine solutions characteristic of cellular systems with traditional systems such as a technological, linear, or mixed structure. However, this requires the application of technological solutions with the highest level of organization.
Go to article

Authors and Affiliations

Jerzy Duda
1
Andrzej Macioł
2
Stanisław Jedrusik
2
Bogdan Rebiasz
2
A. Stawowy
ORCID: ORCID
Monika Sopinska-Lenart
3
Adam Stawowy
2

  1. AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  3. Addit Sp. z o.o., Wegrow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This research investigates the effects of green logistics practices on the sustainability performance of manufacturing enterprises in Oman, with a particular focus on the mediating role of circular economy practices. Analyzing data from 220 manufacturing companies through the PLS-SEM method, the findings reveal that green logistics management significantly enhances an organization’s sustainability and adherence to circular economy principles. Notably, while supply chain trackability greatly impacts circular economy practices, it does not moderate the relationship between sustainable performance and green logistics. This study enhances the understanding of how green logistics can support sustainable development and the implementation of circular economy practices in the manufacturing sector
Go to article

Authors and Affiliations

Amitabh Verma
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a metrological analysis of the additively manufactured (AM) copies of a complex geometrical object, namely the fossil skull of Madygenerpeton pustulatum. This fossil represents the unique remains of an extinct “reptiliomorph amphibian” of high importance for palaeontological science. For this research, the surface was scanned and twelve different copies were 3D-printed using various devices, materials, and AM techniques. The same digitized model was used as a reference to compare with the surfaces obtained by Mitutoyo Coordinate Measuring Machine (CMM) CRYSTA-Apex S 9166 for each copy. The fidelity of the copies was assessed through statistical analysis of the distances between compared surfaces. The methodology provided a good background for the choice of the most accurate copies and the elimination of the less accurate ones. The proposed approach can be applied to any object of complex geometry when reproduction accuracy is to be assessed.
Go to article

Authors and Affiliations

Mirosław Rucki
1
ORCID: ORCID
Yaroslav Garashchenko
2
ORCID: ORCID
Ilja Kogan
3 4
ORCID: ORCID
Tomasz Ryba
5
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
  2. Department of Integrated Technologic Process and Manufacturing, National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  3. Museum für Naturkunde Chemnitz, Germany
  4. Geological Institute, TU Bergakademie Freiberg, Germany
  5. Łukasiewicz Research Network – Institute for Sustainable Technologies, Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

Computational intelligence (CI) can adopt/optimize important principles in the workflow of 3D printing. This article aims to examine to what extent the current possibilities for using CI in the development of 3D printing and reverse engineering are being used, and where there are still reserves in this area. Methodology: A literature review is followed by own research on CI-based solutions. Results: Two ANNs solving the most common problems are presented. Conclusions: CI can effectively support 3D printing and reverse engineering especially during the transition to Industry 4.0. Wider implementation of CI solutions can accelerate and integrate the development of innovative technologies based on 3D scanning, 3D printing, and reverse engineering. Analyzing data, gathering experience, and transforming it into knowledge can be done faster and more efficiently, but requires a conscious application and proper targeting.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Joanna Nowak
2
ORCID: ORCID
Zbigniew Szczepański
2
ORCID: ORCID
Marek Macko
2
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland
  2. Faculty of Mechatronics, Kazimierz Wielki University, Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Microstructure and texture analysis were conducted employing electron backscatter diffraction (EBSD) technique on laser powder bed fusion (LPBF) fabricated pure Ni. The texture analysis of the hot isostatic pressed (HIP) and as-printed (AP) samples were done utilizing orientation distribution function (ODF) maps. The AP sample comprises mostly of <110>||BD fiber texture with insignificant presence of twins. In contrast, the HIP sample has <111>||BD grains. It was found that the development of the texture <111>||BD was due to the deformation linked to the HIP process. In addition, HIP generated a substantial fraction of Σ3 coincident site lattice boundaries (CSL) because of pure Ni which is a medium stacking fault energy (SFE) element.
Go to article

Authors and Affiliations

K. Chadha
1
ORCID: ORCID
Y. Tian
2
ORCID: ORCID
J.G. Spray
3
ORCID: ORCID
C. Aranas Jr.
4
ORCID: ORCID

  1. University of New Brunswick Fredericton, Department of Mechanical Engineering, New Brunswick E3B 5A3, Canada; University of New Brunswick Fredericton, Planetary and Space Science Centre, New Brunswick E3B 5A3, Canada
  2. Voestalpine Additive Manufacturing Centre Ltd. Mississauga, Ontario L5N 7Y3 Canada
  3. University of New Brunswick Fredericton, Planetary and Space Science Centre, New Brunswick E3B 5A3, Canada
  4. University of New Brunswick Fredericton, Department of Mechanical Engineering, New Brunswick E3B 5A3, Canada
Download PDF Download RIS Download Bibtex

Abstract

Major manufactures are moving towards a sustainability goal. This paper introduces the results of collaboration with the leading company in the packaging and advertising industry in Germany and Poland. The problem addresses the manufacturing planning problem in terms of minimizing the total cost of production. The challenge was to bring a new production planning method into cardboard manufacturing and paper processing which minimizes waste, improves the return of expenses, and automates daily processes heavily dependent on the production planners’ experience. The authors developed a module that minimizes the total cost, which reduces the overproduction and is used by the company’s manufacturing planning team. The proposed approach incorporates planning allowances rules to compromise the manufacturing requirements and production cost minimization.
Go to article

Authors and Affiliations

Kateryna Czerniachowska
1
ORCID: ORCID
Krzysztof Żywicki
2
ORCID: ORCID
Radosław Wichniarek
2
ORCID: ORCID

  1. Wroclaw University of Economics and Business, Wroclaw, Poland
  2. Poznan University of Technology, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the era of smart manufacturing and Industry 4.0, the rapid development of modelling in production processes results in the implementation of new techniques, such as additive manufacturing (AM) technologies. However, large invest-ments in the devices in the field of AM technologies require prior analysis to identify the possibilities of improving the production process flow. This paper proposes a new approach to determine and optimize the production process flow with improvements made by the AM technologies through the application of the Petri net theory. The existing produc-tion process is specified by a Petri net model and optimized by AM technology. The modified version of the system is verified and validated by the set of analytic methods safeguarding against the formal errors, deadlocks, or unreachable states. The proposed idea is illustrated by an example of a real-life production process.
Go to article

Authors and Affiliations

Justyna Patalas-Maliszewska
1
ORCID: ORCID
Remigiusz Wiśniewski
2
ORCID: ORCID
Marcin Topczak
1
ORCID: ORCID
Marcin Wojnakowski
2
ORCID: ORCID

  1. Institute of Mechanical Engineering, University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
  2. Institute of Control & Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. In this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.
Go to article

Bibliography

[1] M .K. Thompson et al, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annuals 65, 737-760 (2016).
[2] M . Kumke, H. Watschke, T. Vietor, A new methodological framework for design for additive manufacturing, Virtual and Physical Prototyping 11, 3-19 (2016).
[3] L. Frizziero and et al., Design for Additive Manufacturing and Advanced Development Methods Applied to an Innovative Multifunctional Fan, Additive Manufacturing: Breakthoughs in Research and Practic 34 (2020).
[4] F .F. Wang, E. Parker, 3D printed micro-channel heat sink design considerations, 2016 International Symposium on 3D Power Electronics Integration and Manufacturing 16320350 (2016).
[5] Chunlei Wan and et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dischalcogenide TiS2, Nature Materials 14, 622-627 (2015).
[6] M . Helou, S. Kara, Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing 31, 243-261 (2018).
[7] C. Dimitrios et al., Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions, Additive Manufacturing 18, 101720 (2020).
[8] D. Yong et al., Thermoelectric materials and devices fabricated by additive manufacturing, Vacuum 178, 109384 (2020).
[9] S. Ning et al., 3D-printing of shape-controllable thermoelectric devices with enhanced output performance, Energy 195, 116892 (2020).
[10] S. Emrecan et al., Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations, Progress in Additive Manufacturing 465-478 (2019).
Go to article

Authors and Affiliations

Yeong-Jin Woo
1 2
ORCID: ORCID
Dong-Ho Nam
1
ORCID: ORCID
Seok-Rok Lee
1
ORCID: ORCID
Eun-Ah Kim
1
ORCID: ORCID
Woo-Jin Lee
1
ORCID: ORCID
Dong-Yeol Yang
1
ORCID: ORCID
Ji-Hun Yu
1
ORCID: ORCID
Yong-Ho Park
2
ORCID: ORCID
Hak-Sung Lee
1
ORCID: ORCID

  1. Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  2. Pusan National University, Busan, 46241, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In mid-1992, Japanese consultant Yamada Hitoshi was tasked with modifying the production systems of Japanese companies as the existing configurations at manufacturing plants no longer satisfied unstable demands. He made improvements to the overall production system by dividing the long assembly lines into several short ones called cells or seru. Although of the advantages, it is still unclear about how to manage this new production system, and what variables really promoted the desired benefits. We identify in total 39 articles from 2004– 2020 about the progress of the seru production system, and we observe some possibilities to improve the effectiveness of this type of the production system. The first is the possibility of manufacturing the product in flexible sequence, in which the operations are independent among them. We show through the developed example that the makespan may be different. We noted when converting the in-line production system to one pure seru, the makespan tend to increase. Nevertheless, when analyzing the effectiveness of serus working concomitantly considering splitting the same lot, makespan and the cost may be reduced. And finally, when converting to one of pure serus, the performance may be similar to that obtained when serus working concomitantly.
Go to article

Authors and Affiliations

Yung Chin Shih
Download PDF Download RIS Download Bibtex

Abstract

The article reviews the results of experimental tests assessing the impact of process parameters of additive manufacturing technologies on the geometric structure of free-form surfaces. The tests covered surfaces manufactured with the Selective Laser Melting additive technology, using titanium-powder-based material (Ti6Al4V) and Selective Laser Sintering from polyamide PA2200. The evaluation of the resulting surfaces was conducted employing modern multiscale analysis, i.e., wavelet transformation. Comparative studies using selected forms of the mother wavelet enabled determining the character of irregularities, size of morphological features and the indications of manufacturing process errors. The tests provide guidelines and allow to better understand the potential in manufacturing elements with complex, irregular shapes.
Go to article

Authors and Affiliations

Damian Gogolewski
1

  1. Kielce University of Technology, Department of Mechanical Engineering and Metrology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the relationship between the parameters of the DLP manufacturing process and the structure of photopolymerizable acrylic resins. Four different process parameters were established to produce different thin-walled acrylic sample series: exposure time, layer thickness, area offset, and number of transition layers. The structure and the surface of the obtained samples were examined with the use of the FTIR–ATR method and an optical microscope, respectively. It was proved that extension of the exposure time increases the density of crosslinking and sample thickness. A decreasing crosslinking density due to rising layer thickness is observed. The area offset affects only the dimensions of the sample, predictably reducing the dimensions of the sample as the compensation increases. The absence of transition layers proved unfavorable in many respects, both structurally and geometrically.
Go to article

Authors and Affiliations

Dorota Tomczak
1
ORCID: ORCID
Radosław Wichniarek
2
ORCID: ORCID
Wiesław Kuczko
2
ORCID: ORCID
Filip Górski
2
ORCID: ORCID

  1. Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
  2. Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study is devoted to the co-design concept which is not widely studied in the manufacturing industry area. The concept is just practiced but not theorized and not investigated enough, although it greatly deserves it because of its perspectives and advantages potential in the technology changes era. This study aims to present an investigation of literature views on co-design in manufacturing operations, with the comparison to service literature where it is widely discussed; the study also aims at in-depth investigations of co-design occurrences in two industrial cases of product development to understand their nature and circumstances. In addition, the influence of Industry 4.0 technologies and their coexistence with the concept of sustainability will also be strongly taken into consideration in the empirical part of this study. The process of the individualized production of the industrial line for animal food packing and cardboard packaging production has been studied according to case study methodology. The study demonstrates that co-design could contribute to bettering the process of new product development and achieving products more accurate for the final users’ requirements. It goes hand in hand with one of the core ideas of sustainability, which is to have long-lasting products, exploited by the customer with a high level of satisfaction for a longer time. The study implies that the technologies of Industry 4.0 could support wider and more effective co-design exploitation by manufacturing entities.
Go to article

Authors and Affiliations

Elżbieta Krawczyk-Dembicka
1
ORCID: ORCID
Wiesław Urban
1
ORCID: ORCID
Krzysztof Łukaszewicz
1
ORCID: ORCID

  1. Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production is becoming more customer-focused as it departs from delivering standardized mass products to market segments, and the emerging Industry 4.0 technologies render this much easier than before. These technologies enable two-way information exchange with customers throughout all the steps of product development, particularly in terms of tailor-made products. This study aims at presenting proposals of implementing Industry 4.0 technologies into the process of tailored products, where the product is customized for the customer from the start and where adjustments are also made at the manufacturing stage. The study also aims to build a concept of intensification of customer contact and to improve the process flow by applying Industry 4.0 technologies. The study’s subject is tailor-made furniture production, with individually designed products that are manufactured and installed at a customer’s facilities. The company in the study operates on a small scale. The study employs a case study methodology that shows how the process can be improved in terms of real-time effective customer contact and process flow. The huge potential of 3D visualization as well as augmented and virtual reality technologies are also demonstrated. The study concludes with several directions for further development of existing technology solutions.
Go to article

Authors and Affiliations

Krzysztof Łukaszewicz
1
ORCID: ORCID
Wiesław Urban
1
ORCID: ORCID
Elżbieta Krawczyk-Dembicka
1
ORCID: ORCID

  1. Faculty of Engineering Management, Department of Production Management, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Modern industry requires an increasing level of efficiency in a lightweight design. To achieve these objectives, easy-to-apply numerical tests can help in finding the best method of topological optimization for practical industrial applications. In this paper, several numerical benchmarks are proposed. The numerical benchmarks facilitate qualitative comparison with analytical examples and quantitative comparison with the presented numerical solutions. Moreover, an example of a comparison of two optimization algorithms was performed. That was a commonly used SIMP algorithm and a new version of the CCSA hybrid algorithm of topology optimization. The numerical benchmarks were done for stress constraints and a few material models used in additive manufacturing.
Go to article

Bibliography

  1.  S.I. Valdez, S. Botello, M.A. Ochoa, J.L. Marroquín, and V. Cardoso, “Topology Optimization Benchmarks in 2D: Results for Min- imum Compliance and Minimum Volume in Planar Stress Problems,” Arch. Comput. Methods Eng., vol. 24, no. 4, pp. 803–839, Nov. 2017, doi: 10.1007/s11831-016-9190-3.
  2.  M. Fanni, M. Shabara, and M. Alkalla, “A Comparison between Different Topology Optimization Methods,” Bull. Fac. Eng. Mansoura Univ., vol. 38, no. 4, pp. 13–24, Jul. 2020, doi: 10.21608/bfemu.2020.103788.
  3.  S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization solvers for structural topology optimization,” Struct. Multidiscip. Optim., vol. 52, no. 3, pp. 527–547, Sep. 2015, doi: 10.1007/s00158-015-1250-z.
  4.  D. Yang, H. Liu,W. Zhang, and S. Li, “Stress-constrained topology optimization based on maximum stress measures,” Comput. Struct., vol. 198, pp. 23–39, Mar. 2018, doi: 10.1016/j.compstruc.2018.01.008.
  5.  D. Pasini, A. Moussa, and A. Rahimizadeh, “Stress-Constrained Topology Optimization for Lattice Materials,” in Encyclopedia of Con- tinuum Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 1–19.
  6.  E. Lee, K.A. James, and J.R.R.A. Martins, “Stress-constrained topology optimization with design-dependent loading,” Struct. Multidis- cip. Optim., vol. 46, no. 5, pp. 647–661, Nov. 2012, doi: 10.1007/s00158-012-0780-x.
  7.  L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary struc- tural optimization method,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 356 –370, May 2018, doi: 10.1016/j.cma. 2018.01.035.
  8.  S. Bulman, J. Sienz, and E. Hinton, “Comparisons between algorithms for structural topology optimization using a series of benchmark studies,” Comput. Struct., vol. 79, no. 12, pp. 1203–1218, May 2001, doi: 10.1016/S0045-7949(01)00012-8.
  9.  G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization,” Struct. Optim., vol. 15, no. 1, pp. 42–48, Feb. 1998, doi: 10.1007/BF01197436.
  10.  G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, no. 3, pp. 217–237, Jan. 2009, doi: 10.1007/s00158-007-0217-0.
  11.  T. Lewiński and G.I.N. Rozvany, “Analytical benchmarks for topological optimization IV: Square-shaped line support,” Struct. Multidiscip. Optim., vol. 36, no. 2, pp. 143–158, Aug. 2008, doi: 10.1007/s00158-007-0205-4.
  12.  A. Verbart, M. Langelaar, and F. van Keulen, “Damage approach: A new method for topology optimization with local stress constraints,” Struct. Multidiscip. Optim., vol. 53, no. 5, pp. 1081–1098, May 2016, doi: 10.1007/s00158-015-1318-9.
  13.  S. Goo, S. Wang, J. Hyun, and J. Jung, “Topology optimization of thin plate structures with bending stress constraints,” Comput. Struct., vol. 175, pp. 134–143, Oct. 2016, doi: 10.1016/ j.compstruc.2016.07.006.
  14.  E. Holmberg, B. Torstenfelt, and A. Klarbring, “Stress constrained topology optimization,” Struct. Multidiscip. Optim., vol. 48, no. 1, pp. 33–47, Jul. 2013, doi: 10.1007/s00158-012-0880-7.
  15.  E. Holmberg, Topology optimization considering stress, fatigue and load uncertainties. Linköping University Electronic Press, 2015.
  16.  L. He, M. Gilbert, T. Johnson, and T. Pritchard, “Conceptual design of AM components using layout and geometry optimization,” Comput. Math. with Appl., vol. 78, no. 7, pp. 2308–2324, Oct. 2019, doi: 10.1016/j.camwa.2018.07.012.
  17.  M. Mrzygłód, “Multi-constrained topology optimization using constant criterion surface algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 2, pp. 229–236, Oct. 2012, doi: 10.2478/v10175-012-0030-9.
  18.  M. Zhou and G.I.N. Rozvany, “The COC algorithm, Part II: Topological, geometrical and generalized shape optimization,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3, pp. 309–336, Aug. 1991, doi: 10.1016/0045-7825(91)90046-9.
  19.  M.P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
  20.  M.W. Mrzygłód, “Alternative quasi-optimal solutions in evolutionary topology optimization,” in AIP Conference Proceedings, 2018, vol. 1922, p. 020007-1‒020007-7, doi: 10.1063/1.5019034.
  21.  G. Fiuk and M.W. Mrzygłód, “Topology optimization of structures with stress and additive manufacturing constraints,” J. Theor. Appl. Mech., vol. 58, no. 2, pp. 459–468, Apr. 2020, doi: 10.15632/jtam-pl/118899.
  22.  M. Mrzygłód and T. Kuczek, “Uniform crashworthiness optimization of car body for high-speed trains,” Struct. Multidiscip. Optim., vol. 49, no. 2, pp. 327–336, Feb. 2014, doi: 10.1007/s00158-013-0972-z.
  23.  P. Duda and M.W. Mrzygłód, “Shape and operation optimization of a thick-walled power boiler component,” in MATEC Web of Confer- ences, Nov. 2018, vol. 240, p. 05006, doi: 10.1051/matecconf/201824005006.
  24.  T. Lewiński and G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains,” Struct. Multidiscip. Optim., vol. 35, no. 2, pp. 165–174, Feb. 2008, doi: 10.1007/s00158-007-0157-8.
  25.  N. Olhoff, J. Rasmussen, and M.P. Bendsøe, “On CADIntegrated Structural Topology and Design Optimization,” in Evaluation of Global Bearing Capacities of Structures, Vienna: Springer Vienna, 1993, pp. 255–280.
  26.  A.G.M. Michell, “LVIII. The limits of economy of material in frame-structures,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 8, no. 47, pp. 589–597, 1904, doi: 10.1080/14786440409463229.
Go to article

Authors and Affiliations

Grzegorz Fiuk
1
ORCID: ORCID
Mirosław W. Mrzygłód
1
ORCID: ORCID

  1. Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the influence of the parameters of Fused Deposition Modelling (FDM) on the mechanical properties and geometric accuracy of angle-shaped parts. The samples were manufactured from acrylonitrile butadiene styrene (ABS) on a universal machine. A complete factorial experiment was conducted. The results indicated that the critical technological parameter was the angular orientation of the sample in the working chamber of the machine. The results were compared with the results of research performed on simple rectangular samples. A significant similarity was found in the relationships between the FDM parameters and properties for both sample types.
Go to article

Bibliography

  1.  T. Kudasik and S. Miechowicz, “Methods of reconstructing complex multi-structural anatomical objects with RP techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 315‒323 (2016), doi: 10.1515/bpasts-2016-0036.
  2.  O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology, promises and challenges”, Rapid Prototyp. J. 19, 353‒364 (2013), doi: 10.1108/RPJ-12-2011-0127.
  3.  J. Safka, M. Ackermann, and D. Martis, “Chemical resistance of materials used in additive manufacturing”, MM Sci. J. 2016, 1573‒1578 (2016), doi: 10.17973/MMSJ.2016_12_2016185.
  4.  R.I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing, rapid Prototyp. comes of age”, Rapid Prototyp. J. 18, 255‒258 (2012), doi: 10.1108/13552541211231563.
  5.  T. Kudasik, M. Libura, O. Markowska, and S. Miechowicz, “Methods for designing and fabrication large-size medical models for orthopaedics”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 623‒627 (2015), doi: 10.1515/bpasts-2015-0073.
  6.  G.N. Levy, R. Schindel, and J.P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann. 52, 589‒609 (2003), doi: 10.1016/S0007-8506(07)60206-6.
  7.  D. Croccolo, M. De Agostinis, and G. Olmi, “Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30”, Comput. Mater. Sci. 79, 506–518 (2013), doi: 10.1016/j.commatsci.2013.06.041.
  8.  S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem Rev. 117, 10212‒10290 (2017), doi: 10.1021/acs.chemrev.7b00074.
  9.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  10.  D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens, A review”, Polym. Test. 69, 157‒166 (2018), doi: 10.1016/j.polymertesting.2018.05.020.
  11.  M. Montero, R. Shad, D. Odell, S.H. Ahn, and P.K. Wright, “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Soc. Manuf. Eng. 10, 1‒21 (2001).
  12.  H.C. Song, N. Ray, D. Sokolov, and S. Lefebvre, “Anti-aliasing for fused filament deposition. Comput”, Aided Des. 89, 25‒34 (2017), doi: 10.1016/j.cad.2017.04.001.
  13.  S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J. 8, 248‒257 (2002), doi: 10.1108/13552540210441166.
  14.  C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Mater. Des. 90, 453‒458 (2016), doi: 10.1016/j.matdes.2015.11.009.
  15.  O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, J. Mater. Eng. Perform. 25, 2922–2935 (2016), doi: 10.1007/ s11665-016-2157-6.
  16.  A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des. 31, 287–295 (2010), doi: 10.1016/j.matdes.2009.06.016.
  17.  G.C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”, Int. J. Manuf. Eng. 2014, 598531 (2014), doi: 10.1155/2014/598531.
  18.  M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, “Parametric optimization of intra and interlayer strengths in parts produced by extrusion based additive manufacturing of poly(lactic acid)”, J. Appl. Polym. Sci. 134, 45401 (2017), doi: 10.1002/app.45401.
  19.  A. Peng, X. Xiao, and R. Yue, “Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system”, Int. J. Adv. Manuf. Technol. 73, 87‒100 (2014), doi: 10.1007/s00170-014-5796-5.
  20.  G. Papazetis, G.C. Vosniakos, “Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments”, Int. J. Adv. Manuf. Technol. 100, 2207‒2219 (2019), doi: 10.1007/s00170-018-2820-1.
  21.  S. Mahmood, A.J. Qureshi, K.L. Goh, and D. Talamona, “Tensile strength of partially filled FFF printed parts, experimental results”, Rapid Prototyp. J. 23, 122‒128 (2017), doi: 10.1108/RPJ-08-2015-0115.
  22.  S. Abid et al., “Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design”, Int. J. Adv. Manuf. Technol. 100, 1363‒1372 (2019), doi: 10.1007/s00170-018-2710-6.
  23.  V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G Tavitov, “Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process”, Polymers 10, 1‒16 (2018), doi: 10.3390/polym10030313.
  24.  L. Yang, S. Li, Y. Li, and Y. Mingshun, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts”, J. Mater. Eng. Perform. 28, 169‒182 (2019), doi: 10.1007/s11665-018-3784-x.
  25.  J.T. Belter and A.M. Dollar, “Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique”, PloS One 10(4) (2015), doi: 10.1371/journal.pone.0122915.
  26.  J.A. Gopsill, J. Shindler, and B.J. Hicks, “Using finite element analysis to influence the infill design of fused deposition modelled parts”, Prog. Addit. Manuf. 3, 145‒163 (2018), doi: 10.1007/s40964-017-0034-y.
  27.  G.A.M. Capote, N.M. Rudolph, P.V. Osswald, and A.T. Osswald, “Failure surface development for ABS fused filament fabrication parts”, Addit. Manuf. 28, 169‒175 (2019), doi: 10.1016/j.addma.2019.05.005.
  28.  F. Gorski, R. Wichniarek, W. Kuczko, and A. Hamrol, “Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms”, J. Mult.-Valued Logic Soft Comput. 32, 293‒311 (2019).
Go to article

Authors and Affiliations

Wiesław Kuczko
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Radosław Wichniarek
1
ORCID: ORCID
Filip Górski
1
ORCID: ORCID
Michał Rogalewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

An analysis of sandwich beams with truss core is an important issue in many fields of industry such as civil engineering, automotive, aerospace or maritime. The objective of the present study is a nonlinear static response of sandwich beams subjected to the three-point bending test configuration. The beams are composed of two parent components: upper and lower laminated face sheets (unidirectional tape) and a pyramidal truss core manufactured by means of 3D printing. A polyamide filament strengthened with chopped carbon fibres – CF-PA-12 is used for the core development. The both, experimental and numerical analyses are presented. A detailed numerical model of the sandwich beam was developed in Abaqus software. The numerical model considers modelling of the adhesive joint with an additional layer of material placed between the parent components of the beam. A continuum hybrid solid shell elements were used to model the adhesive layer. In addition, a special care was taken to use an appropriate material model for the CF-PA-12 filament. To do so, the uniaxial tensile tests were performed on 3D printed samples. Having acquired the test data, a hyperelastic material model was evaluated based on a curve fitting approach.
Go to article

Authors and Affiliations

Miroslaw Wesolowski
1
ORCID: ORCID
Mariusz Ruchwa
1
ORCID: ORCID
Sandris Rucevskis
2
ORCID: ORCID

  1. Koszalin University of Technology, Faculty of Civil Engineering, Environment and Geodesy,ul. Sniadeckich 2, 75-453 Koszalin, Poland
  2. Riga Technical University, Faculty of Civil Engineering, 6B/6A Kipsalas Street, Riga, LV-1048, Latvia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental research regarding the determination of the flow characteristics of the compressor of an automotive turbocharger with a plastic rotor disc. The disc was manufactured using the 3D printing technology called the multijet printing, which allows complex geometries to be printed with high precision. Currently, in addition to speeding up the manufacturing processes and reducing their costs, 3D printing technologies are increasingly seen as standard tools that can be used in the design and optimization of machine parts. This article is a continuation of research on the possibility of applying additively manufactured elements in turbomachines. The experimental research was carried out at high rotational speeds (up to 110 000 rpm), using the automotive turbocharger with two different compressor rotors (i.e. one aluminum and one polymer). The first chapters of the paper discuss the preparation stage of the research (i.e. the manufacture of the rotor, the test rig). Then, the experimental research and the flow characteristics are described. The results obtained for the two types of discs were compared with each other and the area of application of the additively manufactured rotor was determined. The rotor functioned properly in the range of tested operating parameters and the results obtained showed that the technology and material applied could be used in the optimization studies of the blade systems of high-speed fluid-flow machines.
Go to article

Bibliography

[1] Liaw C.Y., Guvendiren M.: Current and emerging applications of 3D printing in medicine. Biofabrication 9(2017), 2, 024102.
[2] Tejo-Otero A., Buj-Corral I., Fenollosa-Artés F.: 3D printing in medicine for preoperative surgical planning: A review. Ann. Biomed. Eng. 48(2020), 2, 536– 555.
[3] Christensen A., Rybicki F.J.: Maintaining safety and efficacy for 3D printing in medicine. J. 3D Print. Med. 3(2017), 1–10.
[4] Kumar L.J., Nair C.K.: Current trends of additive manufacturing in the aerospace industry. In: Advances in 3D Printing and Additive Manufacturing Technologies (L.J. Kumar, D.I. Wimpenny, P.M. Pandey, Eds.) Springer, Singapore 2017, 39–54.
[5] Lee H., Jang Y., Choe J. K., Lee S., Song H., Lee J. P., Kim J.: 3D-printed programmable tensegrity for soft robotics. Sci. Robotics 5(2020), 45, eaay9024.
[6] Andrearczyk A., Baginski P., Klonowicz P.: Numerical and experimental investigations of a turbocharger with a compressor wheel made of additively manufactured plastic. Int. J. Mech. Sci. 178(2020), 105613.
[7] Kariz M., Sernek M., Obucina M., Kuzman M.K.: Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 14(2018), 135–140.
[8] Andrearczyk A, Konieczny B, Sokołowski J.: Additively Manufactured Parts Made of a Polymer Material Used for the Experimental Verification of a Component of a High-Speed Machine with an Optimised Geometry – Preliminary Research. Polymers 13(2021), 1, 137.
[9] Cantrell J.T., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., Ifju P.G.: Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping J. 2017.
[10] Bassett K., Carriveau R., Ting D.K.: 3D printed wind turbines part 1: Design considerations and rapid manufacture potential. Sustainable Energy Technologies and Assessments 11(2015), 186–193.
[11] Constantinou P., Roy S.: A 3D printed electromagnetic nonlinear vibration energy harvester. Smart Mater. Struct. 25(2016), 9, 095053.
[12] Zhang X., Zhou H., Shi W., Zeng F., Zeng H., Chen G.: Vibration tests of 3D printed satellite structure made of lattice sandwich panels. AIAA J. 56(2018), 10, 1–5.
[13] Zeppei D., Koch S., Rohi A.: Ball bearing technology for passenger car turbochargers. MTZ worldwide 77(2016), 26–31.
[14] Idzior M., Karpiuk W., Bielinski M., Borowczyk T., Daszkiewicz P., Stobnicki P.: A concept of a turbocharger test stand. Combust. Engines 156(2014), 1, 30–40.
[15] Andrearczyk A., Baginski P., Zywica G.: Test stand for the experimental investigation of turbochargers with 3d printed components. Mechanics and Mechanical Engineering 22(2020), 2, 397–404.
[16] Andrearczyk A., Mieloszyk M., Baginski P.: Destructive tests of an additively manufactured compressor wheel performed at high rotational speeds. In: Proc. Int. Conf. Applied Human Factors and Ergonomics. Springer, Cham 2020, 117–123.
[17] Wisniewski P.P., Dykas, S., Zhang G.: Numerical studies of air humidity importance in the first stage rotor of turbine compressor. Arch. Thermodyn. 41(2020), 4, 223–234.
[18] MarSurf PS1, https://metrology.mahr.com/de/produkte/artikel/6910235-mobilesrauheitsmessgeraet- marsurf-ps-10-c2
[19] LabView software, https://www.ni.com/pl-pl/shop/labview.html
[20] TMD20, https://www.czaki.pl/produkt/przetwornik-pomiarowy-tmd-20-modbusrtu- rs-485-programowalny/
[21] Optel Thevon, https://www.optel-texys.com/en/152-g6-gpk-1-152.html
[22] Flowmeter EE741, https://www.epluse.com/en/products/flow-meter/flow-meterindustrial/ ee741/
[23] Peltron NPX pressure transducer, https://peltron.pl/produkty/przetwornikcisnienia- npx/
Go to article

Authors and Affiliations

Artur Andrearczyk
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Manufacturing errors (MEs) are unavoidable in product fabrication. The omnipresence of manufacturing errors (MEs) in product engineering necessitates the development of robust optimization methodologies. In this research, a novel approach based on the morphological operations and interval field (MOIF) theory is proposed to address MEs in the discrete-variable-based topology optimization procedures. On the basis of a methodology for deterministic topology optimization (TO) based on the Min-Cut, MOIF introduces morphological operations to generate geometrical variations, while the dimension of the structuring element is dynamically set by the interval field function’s output. The effectiveness of the proposed approach as a powerful tool for accounting for spatially uneven ME in the TOs has been demonstrated.
Go to article

Authors and Affiliations

Meng Xia
1
Jing Li
1

  1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310027, China
Download PDF Download RIS Download Bibtex

Abstract

Quality of 3d model in simple way translates into quality of final product, obtained from 3d printing. 3d CAx software give possibility to create enormous number of shapes – doesn’t matter solids or surfaces. The question is where is the frontier between quality of 3d model and a value for money of the completed print? Is it always necessary to create as good model as possible? This paper will focus on preparation of 3d models, based on primitives and will show connection between quality of mesh, its size and deviations and quality of obtained samples, in same manufacturing conditions.
Go to article

Authors and Affiliations

M. Tagowski
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Technology and Automation, 21. Armii Krajowej Av., 42-201 Częstochowa, Poland

This page uses 'cookies'. Learn more