Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The research was aimed at examining the impact of the petrographic composition of coal from the Janina mine on the gasification process and petrographic composition of the resulting char. The coal was subjected to fluidized bed gasification at a temperature below 1000°C in oxygen and CO2 atmosphere. The rank of coal is borderline subbituminous to bituminous coal. The petrographic composition is as follows: macerals from the vitrinite (61.0% vol.); liptinite (4.8% vol.) and inertinite groups (29.0% vol.). The petrofactor in coal from the Janina deposit is 6.9. The high content of macerals of the inertinite group, which can be considered inert during the gasification, naturally affects the process. The content of non-reactive macerals is around 27% vol. The petrographic analysis of char was carried out based on the classification of International Committee for Coal and Organic Petrology.

Both inertoid (34.7% vol.) and crassinetwork (25.1% vol.) have a dominant share in chars resulting from the above-mentioned process. In addition, the examined char contained 3.1% vol. of mineroids and 4.3% vol. of fusinoids and solids. The calculated aromaticity factor increases from 0.75 in coal to 0.98 in char. The carbon conversion is 30.3%. Approximately 40% vol. of the low porosity components in the residues after the gasification process indicate a low degree of carbon conversion. The ash content in coal amounted to 13.8% and increased to 24.10% in char. Based on the petrographic composition of the starting coal and the degree of conversion of macerals in the char, it can be stated that the coal from the Janina deposit is moderately suitable for the gasification process.

Go to article

Authors and Affiliations

Barbara Bielowicz
Download PDF Download RIS Download Bibtex

Abstract

A modified approach to equilibrium modelling of coal gasification is presented, based on global thermodynamic analysis of both homogeneous and heterogeneous reactions occurring during a gasification process conducted in a circulating fluid bed reactor. The model is based on large-scale experiments (ca. 200 kg/h) with air used as a gasification agent and introduces empirical modifications governing the quasi-equilibrium state of two reactions: water-gas shift and Boudouard reaction. The model predicts the formation of the eight key gaseous species: CO, CO2, H2O, H2, H2S, N2, COS and CH4, volatile hydrocarbons represented by propane and benzene, tar represented by naphthalene, and char containing the five elements C, H, O, N, S and inorganic matter.

Go to article

Authors and Affiliations

Marek Ściążko
Leszek Stępień
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen as a raw material finds its main use and application on the Polish market in the chemical industry. Its potential applications for the production of energy in fuel cell systems or as a fuel for automobiles are widely analyzed and commented upon ever more frequently. At present, hydrogen is produced worldwide mainly from natural gas, using the SMR technology or via the electrolysis of water. Countries with high levels of coal resources are exceptional in that respect, as there the production of hydrogen is increasingly based on gasification processes. China is such an example. There some 68% of hydrogen is generated from coal. The paper discusses the economic efficiency of hydrogen production technologies employing lignite gasification, comparing it with steam reforming of natural gas technology (SMR). In present Polish conditions, this technology seems to be the most probable alternative for natural gas substitution.

For the purpose of evaluating the economic efficiency, a model has been developed, in which a sensitivity analysis has been carried out. An example of the technological process of energy-chemical processing of lignite has been presented, based on the gasification process rooted in disperse systems, characteristics of the fuel has been discussed, as well as carbon dioxide emission issues. Subsequently, the assumed methodology of economic assessment has been described in detail, together with its key assumptions. Successively, based on the method of discounted cash flows, the unit of hydrogen generation has been determined, which was followed by a detailed sensitivity analysis, taking the main risk factors connected with lignite/coal and natural gas price relations, as well as the price of carbon credits (allowances for emission of CO2) into account.

Go to article

Authors and Affiliations

Michał Kopacz
ORCID: ORCID
Radosław Kapłan
Krzysztof Kwaśniewski
Download PDF Download RIS Download Bibtex

Abstract

This study represents the first culture-independent profiling of microbial diversity in post-processing wastewater from underground coal gasification (UCG) processes. Three types of post-processing wastewater, named W1, W2 and W3, were obtained from three UCG processes involving two types of coal and two gasification agents, namely oxygen-enriched air and oxygen. Very high concentrations of BTEX (benzene, toluene, ethylbenzene, xylene), polyaromatic hydrocarbons (PAHs), and phenol were detected in the wastewater, classifying it into the fifth toxicity class, indicating very high acute toxicity. The values for the Shannon (H), Ace and Chao1 indices in W2 were the lowest compared to their values in W1 and W3. The dominate phyla were Proteobacteria, contributing 84.64% and 77.92% in W1 and W3, respectively, while Firmicutes dominated in W2 with a contribution of 66.85%. At the class level, Gammaproteobacteria and Alphaproteobacteria were predominant in W1 and W3, while Bacilli and Actinobacteria were predominant in W2. Among Bacilli, the Paenibacillus and Bacillus genera were the most numerous. Our results suggest that the main differentiating factor of the bacterial structure and diversity in the wastewater could be the gasification agent. These findings provide new insights into the shifting patterns of dominant bacteria in post-processing wastewater and illustrate the spread of bacteria in industrial contaminated wastewater.
Go to article

Bibliography

  1. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  2. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  3. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  4. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  5. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  6. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  7. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  8. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  9. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  10. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  11. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  12. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  13. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  14. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  15. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  16. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  17. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  18. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  19. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  20. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  21. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  22. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  23. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  24. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  25. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  26. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  27. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  28. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  29. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  30. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  31. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
  32. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  33. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  34. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  35. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  36. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  37. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  38. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  39. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  40. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  41. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  42. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  43. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  44. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  45. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  46. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  47. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  48. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  49. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  50. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  51. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  52. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  53. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  54. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  55. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  56. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  57. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  58. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  59. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  60. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  61. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  62. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
Go to article

Authors and Affiliations

Łukasz Jałowiecki
1
Jacek Borgulat
1
Aleksandra Strugała-Wilczek
2
Jan Jastrzębski
3
Marek Matejczyk
1
Grażyna Płaza
4

  1. Institute for Ecology of Industrial Areas,Katowice, Poland
  2. Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
  3. Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
  4. Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Requirements for environmental protection, such as reducing emissions of CO2, NOx, and SO2 are the reason for growing interest in new technologies for coal utilization. One of the most promoted technologies is coal gasification. However, like any technology using coal, this process produces wastes – fly ash and slag. Due to the small number of coal gasification plants, these wastes are poorly understood. Therefore, before making decisions on the introduction of coal gasification technology, a waste utilization plan should be developed. This also applies to the slags formed in underground coal gasification technology. One of the options under consideration is to use these wastes as a component in mineral binders of a pozzolanic character. This paper compares the properties of two types of slags. The first slag (MI) comes from fuel gasification, and the second slag (BA) is from underground coal gasification. Slag MI can be classified as basic slag with a chemical composition similar to that of silica fly ash from coal combustion. Slag BA – because of its four times greater content of calcium oxide – belongs to a group of weakly basic slags. The main and only mineral component of slag MI is glassy phase. Slag BA forms – besides the glassy phase – crystalline phases such as mullite (3 Al2O3 · 2 SiO2), quartz (-SiO2), anorthite (Ca(Al2Si2O8)), gehlenit (Ca2Al[(Si,Al)2O7]), wollastonite (Ca3[Si3O9]), 2CaO · SiO2, and 4 CaO · Al2O3 · Fe2O3. The results of analyses have shown that slag BA has better pozzolanic properties (the pozzolanic activity index is 75.1% at 90 days) than slag MI (69.9% at 90 days) The preliminary studies lead to the conclusion that these slags are characterized by very low pozzolanic activity and cannot be used as a pozzolanic material.

Go to article

Authors and Affiliations

Maciej Mazurkiewicz
Ewelina Tkaczewska
Radosław Pomykała
Alicja Uliasz-Bocheńczyk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is the petrographic characterization of coal from the Wieczorek mine and the residues after its gasification. The coal was subjected to gasification in a fluidized bed reactor at a temperature of about 900°C and in an atmosphere of oxygen and CO2. The petrographic, proximate, and ultimate analysis of coal and char was performed. The petrographic composition of bituminous coal is dominated by macerals of the vitrinite group (55% by volume); macerals of inertinite and liptinite groups account for 23% and 16.0%, respectively. In the examined char, the dominant component is inertoid (41% vol.). Mixed dense and mixed porous account for 10.9% and 13.5% vol., respectively. In addition, the examined char also contained unreacted particles such as fusinoids, solids (11.3% vol.), and mineroids (5.1% vol.). The char contains around 65% vol. of low porosity components, which indicates a low degree of carbon conversion and is associated with a low gasification temperature. The char was burned and the resulting bottom and fly ashes were subjected to petrographic analysis. Their composition was compared with the composition of ashes from the combustion of bituminous coal from the Wieczorek mine. Bottom ashes resulting from the combustion of bituminous coal and char did not differ significantly in the petrographic composition. The dominant component was mineroid, which accounted for over 80% vol. When it comes to fly ash, a larger amount of particles with high porosity is observed in fly ash from bituminous coal combustion.

Go to article

Authors and Affiliations

Natalia Maciejończyk
Barbara Bielowicz
Download PDF Download RIS Download Bibtex

Abstract

In this study, non-sintered ceramsite was prepared using coal gasification coarse slag obtained from a methanol plant. The basic performance and heavy metal leaching toxicity were analyzed. The results showed that seven out of nine non-sintered ceramsite groups were in accordance with the national standard of compressive strength (5 MPa), while only three groups met the national standard of water absorption index of less than 22%. The heavy metal concentrations in these three groups were found to be lower than that specified in National Class IV of surface water environment standards. The concentration of Cr was found to be 16.45 μg/L, which represents only 1% of the IV standard. The optimum mixing ratio, which showed high compressive strength (6.76 MPa) and low water absorption (20.12%), was found to be 73% coal gasification coarse slag, 15% cement, and 12% quartz sand. The characterization using Fourier transform infrared spectroscopy showed that the formation of gelatin in ceramsite enhances the performance of the ceramsite base and increases the immobilization of heavy metal. The study proved that the preparation of non-sintered ceramsite using coal gasification coarse slag reduces its environmental risk and achieves efficient utilization of the slag. Therefore, it can be concluded that it is a feasible and environmental friendly method for the disposal of coal slag.

Go to article

Authors and Affiliations

Shenwei Zhao
Linying Yao
Haibin He
Yiping Zou
Lei Hu
Yujia Zhai
Yajing Yu
Jianli Jia
Download PDF Download RIS Download Bibtex

Abstract

A mechanistic exposure experiment was performed on the commercially available and welded Ni-Cr-Mo-Fe alloy samples used in the piping materials of the coal gasification pilot plant. Thermodynamic Ellingham-Pourbaix stability diagrams were constructed to provide insight into the mechanism of the observed corrosion behavior. The thermodynamic inference on the corrosion mechanism was supplemented with the morphological, compositional and microstructural analyses of the exposed samples using scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analyses. X-ray diffraction result revealed stable corrosion products of NiO, MoNi4 and Cr4.6MoNi2.1 after accumulated total exposure duration of 139 h to the corrosive atmosphere. Scanning electron microscopy and energy-dispersive X-ray spectroscopy positively identified formation of rather continuous and adherent pre-oxidation corrosion products although extensively peeled-off oxides were finally observed as corrosion scales on the post-exposure alloy samples, which were attributed to the chlorination/oxidation into thin (spalled) oxides.

Go to article

Authors and Affiliations

Sungkyu Lee
Min Jung Kim
Nuri Choi
Sang Yeon Hwang
Seok-Woo Chung
Seung-Jong Lee
Yongseung Yun
Download PDF Download RIS Download Bibtex

Abstract

Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, preventing economic and physical losses derived from fires.

To achieve this goal, the forecasting performance of two different kinds of artificial neural network models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if necessary.

The same model could be used to avoid undesired drops in the syngas temperature, as low temperature increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature that will lead to an increased efficiency, as UCG is a very exothermic process.

Results of this research were compared with the ones obtained by means of Multivariate Adaptative Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that cannot be adequately modelled using other regression methods.

Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve better forecasts than multi-layer feedforward networks (MLFN) and MARS models.

Go to article

Authors and Affiliations

Alicja Krzemień

This page uses 'cookies'. Learn more