Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 10
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The Tungsten Inert Gas (TIG) welding processes one of the prevalent methods used for welding aluminum alloys. TIG welding is most commonly used due to its superiority in welding less dense materials. The most prevalent issues encountered with TIG welding aluminium alloys are porosity creation and cracking due to solidification, both of which result in lower mechanical properties. Because of the metal’s susceptibility to heat input, this occurs. The current work is the result of a desire to improve the mechanical properties of dissimilar aluminium metals: AA5052-H32 & AA5083-H111. The process parameters of TIG welding are optimized towards eliminating the previously discussed failure scenarios. Various optimization techniques exist towards obtaining optimizing processes such as Response Surface Methodology (RSM), Genetic Algorithm (GA), Artificial Neutral Network (ANN), Flower pollination algorithm, Taguchi method etc, The Taguchi method was chosen for the optimization of process parameters due to its inherent nature of solving problems of singular variance. The optimal parameters combination was determined i.e. welding current at 170 A, filler rod diameter 2.4 mm and Gas flow rate of 11 lpm. The optimized input parameter was used to TIG weld the confirmation specimen which are further investigated for mechanical and metallurgical characterizations. The parameters were optimized and the results indicate that the input current was found to be the most contributing towards improving mechanical properties over all the process parameters.
Przejdź do artykułu

Autorzy i Afiliacje

D. Antony Prabu
1
ORCID: ORCID
K.S. Jayakumar
2
ORCID: ORCID
E. Madhavan Pillai
1
ORCID: ORCID
G. Kumaresan
3
ORCID: ORCID

  1. LOYOLA-ICAM College of Engineering and Technology (LICET), Department of Mechanical Engineering, Loyola Campus, Chennai, Tamil Nadu, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Department of Mechanical Engineering, Chennai, Tamil Nadu, India
  3. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode, Tamil Nadu, India

Abstrakt

Popular statistical techniques, such as Spearman's rank correlation matrix, principal component analysis (PCA) and multiple linear regression analysis were applied to analyze a large set of water quality data of the Rybnik Reservoir generated during semiannual monitoring. Water samples collected at 9 sampling sites located along the main axis of the reservoir were tested for 14 selected parameters: concentrations of co-occurring elements, ions and physicochemical parameters. The aim of this study was to estimate the impact of those parameters on inorganic arsenic occurrence in Rybnik Reservoir water by means of multivariate statistical methods. The spatial distribution of arsenic in Rybnik Power Station reservoir was also included. Inorganic arsenic As(III), As(V) concentrations were determined by hydride generation method (HG-AAS) using SpectrAA 880 spectrophotometer (Varian) coupled with a VGA-77 system for hydride generation and ECT-60 electrothermal furnace. Spearman's rank correlation matrix was used in order to find existing correlations between total inorganic arsenic (AsTot) and other parameters. The results of this analysis suggest that As was positively correlated with PO43-; Fe and TDS. PCA confirmed these observations. Principal component analysis resulted in three PC's explaining 57% of the total variance. Loading values for each component indicate that the processes responsible for As release and distribution in Rybnik Reservoir water were: leaching from bottom sediments together with other elements like Cu, Cd, Cr, Pb, Zn, Ni, Ca (PC1) and co-precipitation with PO43-, Fe and Mn (PC3) regulated by physicochemical properties like T and pH (PC2). Finally, multiple linear regression model has been developed. This model incorporates only 8 (T, pH, PO43-, Fe, Mn, Cr, Cu, TDS) out of initial 14 variables, as the independent predictors of total As contamination level. This study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex environmental data sets.

Przejdź do artykułu

Autorzy i Afiliacje

K. Widziewicz
K. Loska

Abstrakt

In this paper, the microstructure of laser beam welded Sc-modified AA2519-F has been taken under investigation. The welded joint has been produced using Fanuc 710i industrial robot equipped with YLS-6000 6 kW laser beam source. The welding speed and laser power were equal to 0.75 m/min and 3.2 kW, respectively. The investigation involved microstructure observations with the use of both light microscope and scanning electron microscope with energy dispersive spectroscopy (EDS) analysis of chemical composition and microhardness distribution measurements. It has been stated that laser beam welding allows to obtain Sc-modified AA2519-F weld of good quality, characterized by the presence of an equiaxed grain zone containing scandium-rich precipitates adjacent to the fusion boundary.
Przejdź do artykułu

Autorzy i Afiliacje

R. Kosturek
1
ORCID: ORCID
L. Śnieżek
1
ORCID: ORCID
K. Grzelak
1
ORCID: ORCID
M. Wachowski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Mechanical Engineering, 2 gen. S. Kaliskiego Str., 00-908 Warszawa, Poland

Abstrakt

Severe Plastic Deformation (SPD) techniques have been used by researchers for last three decades in order to obtain Ultra-Fine Grained (UFG) materials. Equal Channel Angular Pressing (ECAP) is preferred more than other SPD techniques thanks to its high performance and practicability. Hexa Equal Channel Angular Pressing (Hexa-ECAP) – modified ECAP technique which enables to apply ECAP routes for cylindrical samples properly – was preferred in this study. Within the objective of this study, the effects of coefficient and ram velocity on the mean effective strain and strain inhomogeneity of Hexa-ECAP processed Al7075 aluminium alloy were investigated. Also, the effects of ram velocity and friction coefficient on hardness homogeneity were investigated benefitting from the similarity between the hardness distribution and the strain distribution.
Przejdź do artykułu

Autorzy i Afiliacje

Serkan Öğüt
1
ORCID: ORCID
Hasan Kaya
2
Aykut Kentli
1
Kerim Özbeyaz
1
Mehmet Şahbaz
3
Mehmet Uçar
4

  1. Marmara University, Faculty of Engineering, Mechanical Engineering Department, Istanbul – Turkey
  2. Kocaeli University, Asım Kocabıyık Vocational School, Machine and Metal Technology Department, Kocaeli – Turkey
  3. Karamanoğlu Mehmetbey University, Faculty of Engineering, Mechanical Engineering Department, Karaman, Turkey
  4. Kocaeli University, Faculty of Technology, Automotive Engineering Department, Kocaeli – Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The zinc and lead industry generates substantial quantities of waste. Among the many types of wastes, such as dust or liquid, a large proportion are solid waste such as slags. The purpose of the study was the qualitative and quantitative assessment of the short rotary kiln slags and slags deposited in a hazardous waste landfill originating from zinc and lead metallurgy. This assessment represents the primary step in evaluating materials such as slags concerning their potential for substantial applications, such as process for metal separation. Additionally, this evaluation forms the basis for a comprehensive environmental study. The concentrations of the four predominant metals – Fe>Pb>Zn>Cu – and accompanying elements – Na>Ca>K>Ni>Mn>Cr – were determined using atomic absorption spectroscopy (AAS) after aqua regia digestion. A large variation was found in the phase analysis of the studied materials based on SEM, XRD, X-ray microanalysis, and BCR sequential extraction. The BCR analysis revealed the occurrence of major metals in four different fractions: acid-soluble, reducible, oxidizable, and residual. Pb was mainly present in the acid-soluble fraction, while Fe, Cu, and Zn were present in the residual fraction.
Przejdź do artykułu

Bibliografia

  1. Alan, M. and D. Kara (2019). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey, Talanta, 194, pp. 189-198. DOI: 10.1016/j.talanta.2018.10.030.
  2. Baczewska, A. H., W. Dmuchowski, B. Gworek, P. Dąbrowski and P. Brągoszewska (2016). Comparison of bioindication methods for assessing the level of air pollution with heavy metals in Warsaw, Przemysł Chemiczny, 95/3, pp. 334-338. DOI: 10.15199/62.2016.3.1.
  3. Bernasowski, M., A. Klimczyk and R. Stachura (2017). Overview of Zinc Production in Imperial Smelting Process. Iron and Steelmaking Conference 4-6.10.2017, Horní Bečva, Česká republika.
  4. Briffa, J., E. Sinagra and R. Blundell (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, pp. 1-26. DOI: 10.1016/j.heliyon.2020.e04691.
  5. Cabała, J. (2009). Heavy metals in the soil environment of Olkusz Zn-Pb ore mining regions. Wydawnictwo Uniwersytetu Śląskiego Katowice 2009 (in Polish)
  6. Chao-Yin, K., W. Chung-Hsin and L. Shang-Lien (2005). Removal of copper from industrial sludge by traditional and microwave acid extraction, Journal of Hazardous Materials, 120, 1-3, pp. 249-256. DOI: 10.1016/j.jhazmat.2005.01.013.
  7. Dan Chen, Wing Yin Aua, A. R. Stijn van Ewijk and J. Stegemann (2021). Elemental and mineralogical composition of metal-bearing neutralisation sludges and zinc speciation – A review, Journal of Hazardous Materials, 416, 2. DOI: 10.1016/j.jhazmat.2021.125676.
  8. Ettler, V., F. Bodenan and O. Legendre (2001). Primary phases and natural weathering of old lead-zind pyrometallurgical slag from Pribram, Czech Republic, The Canadian Mineralogist, 39, pp. 873-888. DOI: 10.2113/gscanmin.39.3.873.
  9. Gao, H., G. F. Koopmans, J. Song, J. E. Groenenberg, X. Liu, R. N. J. Comans and L. Weng (2022). Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling, Geoderma, 423. DOI: 10.1016/j.geoderma.2022.115970.
  10. Herreweghe, S. V., R. Swennen, C. Vandecasteele and V. Cappuyns (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples, Environmental Pollution, 122, pp. 323-342. DOI: 10.1016/S0269-7491(02)00332-9.
  11. Izydorczyk, G., K. Mikula, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak and K. Chojnacka (2021). Potential environmental pollution from copper metallurgy and methods of management, Environmental Research, 197, pp. 1-11. DOI: 10.1016/j.envres.2021.111050.
  12. Jin, Z., T. Liu, Y. Yang and D. Jackson (2014). Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition, Ecotoxicology and Environmental Safety, 104, pp. 43-50. DOI: 10.1016/j.ecoenv.2014.02.003.
  13. Jonczy, I., M. Kamińska, B. Chwedorowicz and B. Kowalski (2017). The use of X-ray Spectral Analysis in Microareas in the determination of elements accompanying minerals of Zinc-Lead Ores from the Klucze I deposit. Systemy Wspomagania w Inżynierii Produkcji Górnictwo Zrównoważonego Rozwoju 2016, P. A. Nova. (in Polish)
  14. Ke, W., J. Zeng, F. Zhu, X. Luo, J. Feng, J. He and S. Xue (2022). Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting, Environmental Pollution, 307, pp. 1-11. DOI: 10.1016/j.envpol.2022.119586.
  15. Król, A., K. Mizerna and M. Bożym (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, Journal of Hazardous Materials, 384, 121502, pp. 1-9. DOI: 10.1016/j.jhazmat.2019.121502.
  16. Kruk, M. (2022). Comparison of digestion methods of slag samples from zinc and lead industry to identify the content of selected metals. ArchaeGraph. Łódź 2022 (in Polish)
  17. Lestari, F. Budiyanto and D. Hindarti (2018). Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia, IOP Conference Series: Earth and Environmental Science, 118, 1, pp. 1-7. DOI: 10.1088/1755-1315/118/1/012059.
  18. Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu and H. Yang (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans, Environmental Pollution, 257, pp. 1-7. DOI: 10.1016/j.envpol.2019.11361.
  19. Li, Y., I. Perederiy and V. G. Papangelakis (2008). Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, Journal of Hazardous Materials, 152, pp. 607-615. DOI: 10.1016/j.jhazmat.2007.07.052.
  20. Luo, S., S. Zhao, P. Zhang, J. Li, X. Huang, B. Jiao and D. Li (2022). Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology, Construction and Building Materials, 327, pp. 1-10. DOI: 10.1016/j.conbuildmat.2022.127006.
  21. Margui, V. Salvado, I. Queralt and M. Hidalgo (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes, Analytica Chimica Acta, 524, pp. 151-159. DOI: 10.1016/j.aca.2004.05.043.
  22. Nowińska, K. and Z. Adamczyk (2013). The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment, Górnictwo i Geologia, T. 8, z. 1, pp. 77-87. (in Polish)
  23. Nowińska, K. and Z. Adamczyk (2017). Slags of the Imperial Smelting Process for Zn and Pb production, Reference Module in Materials Science and Materials Engineering, pp. 1-5. DOI: 10.1016/B978-0-12-803581-8.03607-9.
  24. Pan, D. a., L. Li, X. Tian, Y. Wu, N. Cheng and H. Yu (2019). A review on lead slag generation, characteristic, and utilization, Resources, Conservation & Recycling, 146, pp. 140-155. DOI: 10.1016/j.resconrec.2019.03.036.
  25. Patle, A., R. Kurrey, M. K. Deb, T. K. Patle, D. Sinha and K. Shrivas (2022). Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review, Journal of the Idian Chemical Society, 99, pp. 1-12. DOI: 10.1016/j.jics.2022.100545.
  26. Rauret, G., J. Lopez-Sanchez, D. Luck, M. Yli-Halia, H. Muntau and P. Quevauviller (2001). EUR 19775 EN. E. Commission. Belgium.
  27. Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure and P. Quevauviller (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring,1, pp. 57-61. DOI: 10.1039/a807854h
  28. Różański, S. (2013). Fractionation of selected heavy metals in agricultural soils, Ecological Chemistry and Engineering S, 20, 1, pp. 117-125. DOI: 10.2478/eces-2013-0009.
  29. Seignez, N., D. Bulteel, D. Damidot, A. Gauthier and J.-L. Potdevin (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc, Waste Management and the Environment III, 92, pp. 31-40. DOI: 10.2495/WM060041.
  30. Singh, A. and M. K. Chandel (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk, Journal of Environmental Management, 304, pp. 1-11. DOI: 10.1016/j.jenvman.2021.114206.
  31. Singh, G., S. Das, A. A. Ahmed, S. Saha and S. Karmakar (2015). Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure, Procedia - Social and Behavioral Sciences, 195, pp. 2272-2279. DOI: 10.1016/j.sbspro.2015.06.316.
  32. Sobanska, S., D. Deneele, Barbillat and B. A. Ledesert (2016). Natural weathering of slags from primary Pb-Zn smelting as evidenced by Raman microspectroscopy, Applied Geochemistry, 64, pp. 107-117. DOI: 10.1016/j.apgeochem.2015.09.011.
  33. Tlustos, P., J. Szakova, A. Starkova and D. Pavlikova (2005). A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil, Central European Journal of Chemistry, 3, 4, pp. 830-851. DOI: 10.2478/BF02475207.
  34. Wali, A., G. Colinet and M. Ksibi (2014). Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia, Environmental Research, Engineering and Management, 4, 70, pp. 14-26. DOI: 10.5755/j01.erem.70.4.7807.
  35. Wang, J., Y. Jiang, J. Sun, J. She, M. Yin, F. Fang, T. Xiao, G. Song and J. Liu (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter, Ecotoxicology and Environmental Safety, 196, pp. 1-10. DOI: 10.1016/j.ecoenv.2020.110529.
  36. Warchulski, R. and K. Szopa (2014). Phase composition of Katowice – Wełnowiec pytometallurgical slags: preliminary SEM study, Contemporary Trends in Geoscience, 3, pp. 76-81. DOI: 10.2478/ctg-2014-0025.
  37. Xu, D.-M., R.-B. Fu, Y.-H. Tong, D.-L. Shen and X.-P. Guo (2021). The potential environment risk implications of heavy metals based on their geochemical and mineralogical characteristic in the size-segregated zinc smelting slags, Journal of Cleaner Production, 315, pp. 1-13. DOI: 10.1016/j.jelepro.2021.128199.
  38. Yin, N.-H., Y. Sivry, F. Guyou, P. N. L. Lens and E. D. v. Hullebusch (2016). Evaluation on chemical stability of lead blast furnance (LBF) and imperial smelting furnance (ISF) slags, Journal of Environmental Management, 180, pp. 310-323. DOI: 10.1016/j.jenvman.2016.05.052.
  39. Zemberyova, M., J. Bartekova and I. Hagarova (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, pp. 973-978. DOI: 10.1016/j.talanta.2006.05.057.
  40. Zhang, S., N. Zhu, W. Shen, X. Wei, F. Li, W. Ma, F. Mao and P. Wu (2022). Relationship between mineralogical phase and bound heavy metals in copper smelting slags, Resources, Conservation & Recycling, 178, pp. 1-7. DOI: 10.1016/j.resconrec.2021.106098.
Przejdź do artykułu

Autorzy i Afiliacje

Milena Nocoń
1
Irena Korus
1
Krzysztof Loska
1

  1. Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland

Abstrakt

The Drentsche Aa catchment in The Netherlands, which has nearly untouched natural river valleys, is a designated Natura 2000 area. Agriculture is practiced on the adjacent higher-lying ground. A set of measures was drafted to achieve climate-proof solutions in the short term by reducing the effects of a drier climate on nature and agriculture. These measures must have no adverse effects. In order to check this, the Hunze and Aa’s Water Board investigated the feasibility of using groundwater for sprinkler irrigation in parts of the catchment. In the study, the SIMulation of GROundwater and surface water levels (SIMGRO) hydrological model was used in order to model future scenarios with different water level strategies and climate scenarios. The modelling examined various measures in the nature and agricultural areas to optimise the hydrological situation for both land use functions. In addition, the effect on the nature areas of abstracting groundwater for irrigation was determined for buffer zones of different widths. The findings have indicated the policy direction to be taken by both the water board and the province, as well as offer them opportunities to deal with the requests for withdrawals in the near future by the means of future-proof general rules.
Przejdź do artykułu

Autorzy i Afiliacje

Erik Querner
1
ORCID: ORCID
Jan den Besten
2
Rinke van Veen
3
Harry Jager
2

  1. Querner Consult, C.J. Blaauwstraat 38, 6709 DA Wageningen, The Netherlands
  2. Hunze & Aa’s Water Board, Veendam, The Netherlands
  3. Province of Drenthe, Assen, The Netherlands

Abstrakt

Thermal spraying methods are commonly used to regenerate damaged surface or change materials surface properties. One of the newest methods is cold spraying, where coating is deposited of material in the solid state. Therefore shape and size of the powder particles are very important parameters. The article presents the influence of copper powder morphology on mechanical properties of the coatings (adhesion, hardness, Young’s modulus) deposited with the Low Pressure Cold Spraying method on the AA1350 aluminium alloy substrate. The coatings were deposited using two commercially available copper powders with spherical and dendritic morphology and granulation of –40+10 µm. The bond strength of coatings was determined with the pull off method, the hardness with the Vickers method at load of 2.94 N, while the Young’s modulus through measurement of nanoindentation. Microstructure of the coatings was analysed using the light and scanning electron microscopy (SEM). Shape of the powder influences mechanical properties of the coating significantly. The coatings deposited with dendritic powder had low mechanical properties, hardness of the 81 HV0.3 order and adhesion of about 4 MPa. However changing powder morphology to spherical increased hardness of the coating to 180 HV0.3 and adhesion to 38.5 MPa.
Przejdź do artykułu

Autorzy i Afiliacje

D. Grygier
1
ORCID: ORCID
M. Rutkowska-Gorczyca
1
ORCID: ORCID
M.G. Winnicki
2
ORCID: ORCID
T. Wojdat
2
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Vehicle Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  2. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstrakt

The influence of friction stir welding (FSW) in automotive applications is significantly high in recent days as it can boast beneficial factors such as less distortion, minimized residual stresses and enhanced mechanical properties. Since there is no emission of harmful gases, it is regarded as a green technology, which has an energy efficient clean environmental solid-state welding process. In this research work, the FSW technique is employed to weld the AA8011–AZ31B alloy. In addition, the L16 orthogonal array is employed to conduct the experiments. The influences of parameters on the factors such as microstructure, hardness and tensile strength are determined. Microstructure images have shown tunnel formation at low rotational speed and vortex occurrence at high rotational speed. To attain high quality welding, the process parameters are optimized by using a hybrid method called an artificial neural network based genetic algorithm (ANN-GA). The confirmation tests are carried out under optimal welding conditions. The results obtained are highly reliable, which exhibits the optimal features of the hybrid method.
Przejdź do artykułu

Autorzy i Afiliacje

S. Dharmalingam
1
K. Lenin
2
D. Srinivasan
2

  1. Department of Mechanical Engineering, OASYS Institute of Technology, Trichy, Tamilnadu, India
  2. Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Trichy, Tamilnadu, India

Abstrakt

The presented results describe the effect of severe plastic deformation on the structure and mechanical properties of AA5083 and AA5754 alloys. Both materials were subjected to single hydrostatic extrusion (HE) and cumulative hydrostatic extrusion in the case of AA5083 and a combination of plastic deformation by equal-channel angular pressing (ECAP) with the next HE for AA5754. After the deformation, both alloys featured a homogeneous and finely divided microstructure with average grain size deq = 140 nm and 125 nm for AA5083 and AA5754, respectively. The selection of plastic forming parameters enabled a significant increase in the UTS tensile strength and YS yield stress in both alloys – UTS =  510 MPa and YS = 500 MPa for alloy AA5083 after cumulative HE, and 450 MPa and 440 MPa for alloy AA5754 after the combination of ECAP and HE, respectively. It has been shown on the example of AA5083 alloy that after the deformation the threads of the fasteners made of this material are more accurate and workable at lower cutting speeds, which saves the cutting tools. The resultant properties of AA5083 and AA5754 alloys match the minimum requirements for the strongest Al-Zn alloys of the 7xxx series, which, however, due to the considerably lower corrosion resistance, can be replaced in many responsible structures by the AA5xxx series Al-Mg alloys presented in this paper.

Przejdź do artykułu

Autorzy i Afiliacje

M. Kulczyk
J. Skiba
W. Pachla
J. Smalc-Koziorowska
S. Przybysz
M. Przybysz
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this investigation, high specific strength precipitation hardenable alloy AA7068-T6 was joined using friction stir welding. Experiments were carried out using the three factor-three level central composite face-centered design of response surface methodology. Regression models were developed to assess the influence of tool rotational speed, welding speed, and axial force on ultimate tensile strength and elongation of the fabricated joints. The validity of the developed models was tested using the analysis of variance (ANOVA), actual and adjusted values of the regression coefficients, and experimental trials. The analysis of the developed models together with microstructural studies of typical cases showed that the tool rotational speed and welding speed have a significant interaction effect on the tensile strength and elongation of the joints. However, the axial force has a relatively low interaction effect with tool rotational speed and welding speed on the strength and elongation of the joints. The process variables were optimized using the desirability function analysis. The optimized values of joint tensile strength and elongation – 516 MPa and 21.57%, respectively were obtained at a tool rotational speed of 1218 rpm, welding speed of 47 mm/ min, and an axial force of 5.3 kN.
Przejdź do artykułu

Bibliografia

  1.  A.M. Khalil, I.S. Loginova, A.V. Pozdniakov, A.O. Mosleh, and A.N. Solonin, “Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy,” Materials, vol. 12, no. 20, 2019. [Online]. Available: https://www.mdpi. com/1996-1944/12/20/3430.
  2.  M. Minnicino, D. Gray, and P. Moy, “Aluminum alloy 7068 mechanical characterization,” Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research, Tech. Rep., 2009.
  3.  R.S. Mishra and Z. Ma, “Friction stir welding and processing,” Mater. Sci. Eng., R, vol. 50, no. 1‒2, pp. 1–78, 2005.
  4.  M. Mohammadi-pour, A. Khodabandeh, S. Mohammadipour, and M. Paidar, “Microstructure and mechanical properties of joints welded by friction-stir welding in aluminum alloy 7075-T6 plates for aerospace application,” Rare Met., pp. 1–9, 2016.
  5.  P. Goel, A.N. Siddiquee, N.Z. Khan, M.A. Hussain, Z.A. Khan, M.H. Abidi, and A. Al-Ahmari, “Investigation on the effect of tool pin profiles on mechanical and microstructural properties of friction stir butt and scarf welded aluminium alloy 6063,” Metals, vol. 8, no. 1, p. 74, 2018.
  6.  N. Martinez, N. Kumar, R. Mishra, and K. Doherty, “Effect of tool dimensions and parameters on the microstructure of friction stir welded aluminum 7449 alloy of various thicknesses,” Mater. Sci. Eng. A, vol. 684, pp. 470–479, 2017.
  7.  W. Xu, H. Wang, Y. Luo, W. Li, and M. Fu, “Mechanical behavior of 7085-T7452 aluminum alloy thick plate joint produced by double- sided friction stir welding: Effect of welding parameters and strain rates,” J. Manuf. Processes, vol. 35, pp. 261–270, 2018.
  8.  M. Mehta, A. Arora, A. De, and T. DebRoy, “Tool geometry for friction stir welding – optimum shoulder diameter,” Metall. Mater. Trans. A, vol. 42, no. 9, pp. 2716–2722, 2011.
  9.  M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, and A. Lakshminarayanan, “Application of RSM and ANN to predict the tensile strength of Friction StirWelded A319 cast aluminium alloy,” Int. J. Manuf. Res., vol. 4, no. 3, pp. 306–323, 2009.
  10.  S. Jannet, P. Mathews, and R. Raja, “Comparative investigation of friction stir welding and fusion welding of 6061 T6-5083 O aluminum alloy based on mechanical properties and microstructure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 4, 2014.
  11.  K. Deepandurai and R. Parameshwaran, “Multiresponse optimization of FSW parameters for cast AA7075/SiCp composite,” Mater. Manuf. Processes, vol. 31, no. 10, pp. 1333–1341, 2016.
  12.  M.M. Krishnan, J. Maniraj, R. Deepak, and K. Anganan, “Prediction of optimum welding parameters for FSW of aluminium alloys AA6063 and A319 using RSM and ANN,” Mater. Today: Proc., vol. 5, no. 1, pp. 716–723, 2018.
  13.  M. Vahdati, M. Moradi, and M. Shamsborhan, “Modeling and Optimization of the Yield Strength and Tensile Strength of Al7075 Butt Joint Produced by FSW and SFSW Using RSM and Desirability Function Method,” Trans. Indian Inst. Met., vol. 73, no. 10, pp. 2587–2600, 2020.
  14.  G. Derringer and R. Suich, “Simultaneous optimization of several response variables,” J. Qual. Technol., vol. 12, no. 4, pp. 214–219, 1980.
  15.  G. Kumar, R. Kumar, and R. Kumar, “Optimization of process parameters of friction stir welded AA5082- AA7075 butt joints using resonance fatigue properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, 2020, doi: 10.24425/bpasts.2020.131830.
  16.  A.R. Rose, K. Manisekar, and V. Balasubramanian, “Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 21, no. 5, pp. 974–984, 2011.
  17.  K. Jata, K. Sankaran, and J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451,” Metall. Mater. Trans. A, vol. 31, no. 9, pp. 2181–2192, 2000.
  18.  F. Viana, A. Pinto, H. Santos, and A. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization,” J. Mater. Process. Technol., vol. 92, pp. 54–59, 1999.
  19.  D. Godard, P. Archambault, E. Aeby-Gautier, and G. Lapasset, “Precipitation sequences during quenching of the AA 7010 alloy,” Acta Mater., vol. 50, no. 9, pp. 2319– 2329, 2002.
  20.  A.P. Reynolds, W. Tang, Z. Khandkar, J.A. Khan, and K. Lindner, “Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds,” Sci. Technol. Weld. Joining, vol. 10, no. 2, pp. 190–199, 2005.
  21.  V.S. Gadakh and K. Adepu, “Heat generation model for taper cylindrical pin profile in fsw,” J. Mater. Res. Technol., vol. 2, no. 4, pp. 370–375, 2013.
  22.  K.K. Ramachandran, N. Murugan, and S.S. Kumar, “Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method,” Int. J. Adv. Manuf. Technol, vol. 86, no. 9, pp. 2373–2392, 2016.
Przejdź do artykułu

Autorzy i Afiliacje

M.D. Bindu
1
P.S. Tide
1
A.B. Bhasi
1
K.K. Ramachandran
2

  1. Division of Mechanical Engineering, Cochin University of Science and Technology, Kerala, India
  2. Department of Mechanical Engineering, Government Engineering College, Trissur, Kerala, India

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji