Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to determine the effect of heat treatment for the corrosion resistance of the ZnAl40Ti2Cu alloy under “acid rain” conditions. ZnAl40TiCu alloy after supersaturation and after supersaturation and aging was studied. Potentiodynamic studies, potentiostatic studies and studies on structure of the alloy top layer of samples after corrosion tests were carried out. These investigations indicated a significant influence of heat treatment on corrosion resistance of the ZnAl40Ti2Cu alloy. The highest increase in corrosion resistance comparing to the alloy in the as-cast condition may be obtained by supersaturation. A significant influence of the aging temperature and time on corrosion resistance was proved.
Go to article

Authors and Affiliations

R. Michalik
Download PDF Download RIS Download Bibtex

Abstract

The paper present the examination results concerning mechanical properties of castings made of AlSi7MG alloy in correlation both with the most significant squeeze casting parameters and with the modification treatment. Experiments were planned and held according to the 2 3 factorial design. The regression equations describing the influence of the squeeze pressure, the mould temperature, and the quantity of strontium modifier on the strength and elongation of the examined alloy were obtained. It was found that the main factor controlling the strength increase is the squeeze pressure, while the plasticity (A5 ) of the alloy is affected most advantageously by modification. The application of modification treatment in squeeze casting technology enables for production of the slab-type castings made of AlSi7Mg alloy exhibiting strength at the level of 230 MPa and elongation exceeding 14%.
Go to article

Authors and Affiliations

A. Zyska
Z. Konopka
M. Łągiewka
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the presented work was to determine the relationship between changes in the shape of the derivative curve and the microstructure of Zn-Al-Cu alloys before and after modification. To describe the phenomena that occur in the material during solidification as a result of the modification in the chemical composition, the thermal-derivative analysis method was applied. This method allows to describe and interpret the kinetics of crystallisation of the tested alloys. To describe the morphology and phase composition, light and electron microscopy (SEM, TEM) was also used. The modification of the hypereutectic Zn-Al-Cu alloys with the addition of Ce causes a reduction in the size α' + η eutectics and change in the morphology of the α' phase precipitates from dendritic to “tweed”.

Go to article

Authors and Affiliations

M. Krupiński

Authors and Affiliations

Małgorzata Perek-Nowak
1
Grzegorz Boczkal
1
ORCID: ORCID
Paweł Pałka
1
ORCID: ORCID
Piotr Kuropatwa
1

  1. Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Micro-defects detection in solidified castings of aluminum alloy has always been a hot topic, and the method employed is mainly depends upon the size and shape of the specimens. In present paper, the amount and distribution characters of micro-defects in a series of 2219 aluminum alloy ingot, with diameters of φ1380 mm, φ1250 mm, φ1000 mm, φ850 mm and φ630 mm, prepared by direct chill casting were investigated by means of metallographic, respectively. Samples were cut along the radius direction from slices in the steady casting stage. The result reveals that typical micro-defects are consist of inclusions, porosity and shrinkage under optical microscope, and the total amount of micro-defect per unit area in an ingot slightly decreased with the increase of its diameter. Meanwhile, defects were classified into 2 types according to its size, the results suggesting that defects greater than 40 μm account for the largest proportion among the counted two kinds of defects. Moreover, the distribution of defects greater than 40 μm along the radial direction was detected, its amount increases as its distance from the side, indicating that the micro-defects greater than 40 μm distributed the most in the center zone of ingots and the larger the ingot diameter, the more obvious the tendency was.

Go to article

Authors and Affiliations

Yu Liu
Yuanchun Huang
Zhengbing Xiao
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloys belonging to the group of modern metallic materials used in many industries, including the aerospace industries. Induction crucible vacuum furnaces and induction furnaces with cold crucible are most commonly used for their smelting. When operating these devices, one can deal with an adverse phenomenon of decrease in the content of alloy elements that are characterized by higher equilibrium vapour pressure than the matrix metal or titanium, in the metal bath. In the paper, results of the study on aluminium evaporation from the Ti-Al-Nb, Ti-Al-V and Ti-Al alloys (max 6.2 % wt.) during smelting in a vacuum induction melting (VIM) furnace are presented. The experiments were performed at 10 to 1000 Pa for 1973 K and 2023 K. A significant degree of aluminium loss has been demonstrated during the analysed process. The values of relative aluminium loss for all the alloys ranged from 4 % to 25 %. Lowering the pressure in the melting system from 1000 Pa to 10 Pa resulted in increased values of aluminium evaporation flux from 4.82⋅10-5 to 0.000327 g⋅cm-2⋅s-1 for 1973 K and from 9.28⋅10-5 to 0.000344 g⋅cm-2⋅s-1 for 2023 K. The analysis of the results obtained took into account the value of the actual surface of the liquid metal. In the case of melting metals in an induction furnace, this surface depends on the value of power emitted in the charge. At greater power, we observe a significant increase in the bath surface due to the formation of a meniscus.
Go to article

Bibliography

[1] Kostov, A. & Friedrich, B. (2005). Selection of crucible oxides in molten titanium and titanium aluminium alloys by thermo-chemistry calculation. Journal of Mining and Metallurgy. 41B, 113-125. DOI: 10.2298/JMMB0501113K.
[2] Kuang, J.P., Harding, R.A. & Campbell, J. (2000). Investigation into refractories as crucible and mould materials for melting and casting gamma-TiAl alloys. Materials Science and Technology. 16, 1007-1016. DOI: 10.1179/026708300101508964.
[3] Tetsui, T., Kobayashi, T., Mori, T., Kishimoto, T. & Harada, H. (2010). Evaluation of yttrium applicability as a crucible for induction melting of TiAl alloy. Materials Transactions. 51, 1656-1662. DOI: 10.2320/matertrans.MAW20100.
[4] Myszka, D., Karwiński, A., Leśniewski, W. & Wieliczko, P. (2007). Influence of the type of ceramic moulding materials on the top layer of titanium precision castings. Archives of Foundry Engineering. 7(1), 153-156. DOI: 10.7356/ iod.2015.24.
[5] Szkliniarz, A. & Szkliniarz, W. (2011). Assessment quality of Ti alloys melted in induction furnace with ceramic crucible. Solid State Phenomena. 176, 139-148. DOI: 10.4028/www.scientific.net/SSP.176.139.
[6] Jinjie, G., Jun, J., Yuan, S.L., Guizhong, L., Yanqing, S. & Hongsheng, D. (2000). Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B, 837-844. DOI: 10.1007/s11663-000-0120-1.
[7] Isawa, T., Nakamura, H. & Murakami, K. (1992). Aluminum evaporation from titanium alloys in EB hearth melting. ISIJ International. 32, 607-615.
[8] Ivanchenko, V., Ivasishin, G. & Semiatin, S. (2003). Evaluation of evaporation losses during electron-beam melting of Ti-Al-V alloys. Metallurgical and Materials Transactions B. 34B, 911-915. DOI: 10.1007/s11663-003-0097-7.
[9] Su, Y., Guo, J., Jia, J., Liu, G. & Liu, Y. (2002). Composition control of a TiAl melt during the induction skull melting (ISM) process. Journal of Alloys and Compounds. 334, 261-266. DOI: 10.1016/S0925-8388(01)01766-2.
[10] Guo, J., Liu, G., Su, Y., Ding, H., Jia, J. & Fu, H. (2002). The critical pressure and impeding pressure of Al evaporation during induction skull melting processing of TiAl. Metallurgical and Materials Transactions A. 31A, 3249-3253. DOI: 10.1007/s11661-002-0311-2.
[11] Gou, J., Liu, Y., Su, Y., Ding, H., Liu, G. & Jia, J. (2000). Evaporation behaviour of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B, 837-844. DOI: 10.1007/s11663-000-0120-1.
[12] HSC Chemistry ver. 6.1. Outocumpu Research Oy, Pori.
[13] Semiatin, S., Ivanchenko, V., Akhonin, S.O. & Ivasishin, O.M. (2004). Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys. Metallurgical and Materials Transactions B. 35B, 235-245. DOI: 10.1007/s11663-004-0025-5.
[14] Song, J.H., Min, B.T., Kim, J. H., Kim, H.W., Hong, S.W. & Chung, S.H. (2005). An electromagnetic and thermal analysis of a cold crucible melting. International Communications in Heat and Mass Transfer. 32, 1325-1336. DOI: 10.1016/j.icheatmasstransfer.2005.07.015.
[15] Zhu, Y., Yang, Y.Q. & Sun, J. (2004). Calculation of activity coefficients for components in ternary Ti alloys and intermetallics as matrix of composites. Transactions of Nonferrous Metals Society of China. 14, 875-879.
[16] Belyanchikov, L.N. (2010). Thermodynamics of Titanium-Based Melts: I. Thermodynamics of the Dissolution of Elements in Liquid Titanium. Russian Metallurgy. 6, 565-567. DOI: 10.1134/S0036029510060194.
[17] Blacha, L. & Labaj, J. (2012). Factors determining the rate of the process of metal bath components. Metalurgija. 51, 529-533.
[18] Ward, R.G. (1963). Evaporative losses during vacuum induction melting of steel. Journal of the Iron and Steel Institute. 1, 11-15.
[19] Labaj, J. (2010). Copper evaporation kinetics from liquid iron. Wydawnictwo Oldprint. (in Polish).
[20] Ozberk, E. & Guthrie, R. (1985). Evaluation of vacuum induction melting for copper refining. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 94, 146-157.
[21] Ozberk, E. & Guthrie, R. (1986). A kinetic model for the vacuum refining of inductively stirred copper melts. Metallurgical Transactions B. 17, 87-103.
[22] Przyłucki, R., Golak, S., Oleksiak, B. & Blacha, L. (2012). Influence of an induction furnace's electric parameters on mass transfer velocity In the liquid phase. Metalurgija. 1, 67-70.
[23] Blacha, L., Przylucki, R., Golak, S. & Oleksiak, B. (2011). Influence of the geometry of the arrangement inductor - crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive. Archives of Civil and Mechanical Engineering. 11, 171-179. DOI: 10.1016/S1644-9665(12)60181-2.
[24] Blacha, L., Golak, S., Jakovics, S. & Tucs, A. (2014). Kinetic analysis of aluminum evaporation from Ti-6Al-7Nb. Archives of Metallurgy and Materials. 59, 275-279. DOI: 10.2478/amm-2014-0045
[25] Spitans, S., Jakovics, A., Baake, E. & Nacke, B. (2010). Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace. Magnetohydrodynamics. 46, 425-436
[26] Spitans, S., Jakovics, A., Baake, E. & Nacke, B. (2011). Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field. Magnetohydrodynamics. 47, 385-397.
[27] Golak, S. & Przylucki, R. (2008). The optimization of an inductorposition for minimization of a liquid metal free surface, Przegląd Elektrotechniczny. 84, 163-164.
[28] Golak, S. & Przyłucki R. (2009). A simulation of the coupled problem of magnetohydrodynamics and a free surface for liquid metals. WIT Transactions of Engineering Science. 48, 67-76. DOI: 10.2495/MPF090061.
Go to article

Authors and Affiliations

Albert Smalcerz
ORCID: ORCID
Leszek Blacha
ORCID: ORCID
J. Łabaj
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Intermetallic γ-TiAl alloy has excellent properties at high temperatures and is thus attracting attention as a substitute for nickel-based superalloy parts for turbine engines. However, γ-TiAl alloy is reported to be a difficult material to be machined due to its low ductility at room temperature, tensile strength, and thermal conductivity. In this study, a system capable of measuring thrust force (Tf) and torque (Tc) during the drilling process was constructed, and drilling processability according to the heat treated microstructure of γ-TiAl alloy was compared. As a result, it was confirmed that the thrust and torque of the γ-TiAl alloy having a microstructure in which the grains were refined by the heat treatment process was relatively low and rapidly stabilized, which is advantageous for drilling.
Go to article

Bibliography

[1] M. Rahman, Y.S. Wong, A.R. Zareena, Machinability of titanium alloys, JSME Series C 46 (1), 107-115 (2003).
[2] A. Beranoagirre, G. Urbikain, A. Calleja, L. Lacalle, Drilling Process in γ-TiAl Intermetallic Alloys, Materials (Basel) 2018 Dec; 11 (12): 2379. Published online 2018 Nov 26. DOI: https://doi.org/10.3390/ma11122379
[3] S . Castellanos, A. Cavaleiro, Machinability of titanium aluminides: a review, Proceedings of the Institution of Mechanical Engineers 233, 3, 426-451. DOI: https://doi.org/10.1177/1464420718809386
[4] M. Thomas, M.P. Bacos. Processing and Characterization of TiAlbased Alloys: Towards an Industrial Scale. AerospaceLab 3, 1-11 (2011). hal-01183638
[5] J.H. Kim, J.K. Kim, S.W. Kim, Y.H Park, S.E. Kim, Effect of Microstructure Control on the Mechanical Properties of Hot Worked TiAl Alloy, Korean J. Met. Mater. 58, 7, 459-465 (2020). DOI: https://doi.org/10.3365/KJMM.2020.58.7.459
[6] S . Bhowmick, A. Alpas, Minimum quantity lubrication drilling of aluminium – silicon alloys in water using diamond-like carbon coated drills, International Journal of Machine Tools & Manufacture 48, 1429-1443 (2008).
[7] J.N. Wang, J. Yang, Q. Xia, Y. Wang, On the grain size refinement of TiAl alloys by cyclic heat treatment, Materials Science and Engineering A 329-331, 118-123. DOI: https://doi.org/10.1016/S0921-5093(01)01543-X
[8] P.C. Priarone, S. Rizzuti, G. Rotella, Tool wear and surface quality in milling of a gamma-TiAl intermetallic. International Journal of Advanced Manufacturing Technology 61, 25-33 (2012). DOI: https://doi.org/10.1007/s00170-011-3691-x
Go to article

Authors and Affiliations

Hyunseok Yang
1 2
ORCID: ORCID
Woo-Chul Jung
1
ORCID: ORCID
Man-Sik Kong
1
ORCID: ORCID
Changhee Lee
2

  1. Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin, South Korea
  2. Hanyang University, Division of Materials Science and Engineering, Seoul, South Korea
Download PDF Download RIS Download Bibtex

Abstract

Recently, the need to develop fuel efficient transport systems has led to the development of a range of materials of low density, high stiffness and high strength each can be made at a reasonable cost. The aluminium based alloys are particularly important because of their improved mechanical, physical and technical properties. Fatigue failures have been recognised since the early days of the industrial revolution. Fatigue response of most of materials is related with the microstructural variations in the structure. Hence, in this study, influence of particle size and volume fractions on fatigue properties of Al-alloy composites was investigated. It was found that particle size and volume fraction of reinforcement particles play significant role on fatigue propagation rates, stress intensity threshold values, crack tip opening distance and crack tip plastic zone sizes.
Go to article

Authors and Affiliations

I. Uygur
1
ORCID: ORCID

  1. Duzce University, Faculty of Engineering, Department of Mechanical Eng. 81620, Duzce
Download PDF Download RIS Download Bibtex

Abstract

Equal-channel angular pressing (ECAP) was used as a technique for severe plastic deformation (SPD) on Al alloy AA3004. This technique produced fully dense materials of refined grain structure to sub-micrometer dimensions and advanced mechanical properties. The ECAP processing of samples was conducted as 1 to 4 passes through the die at room temperature. We present the results of the studied homogeneity evolution with the ECAP treatment. Furthermore, a Scanning Electron Microscope (SEM) was used for examination of the microstructure changes in samples undergone from 1 to 4 passes. The microhardness-HV increased upon each ECAP pass. The resulting micro-hardness evolution was attributed to crystalline microstructure modifications, such as the d-spacing (studied by X-ray Diffraction-XRD) depending on the number of ECAP pressings. The microcrystalline changes (grain refining evaluated from the Scanning Electron Microscopy – SEM images) were found to be related to the HV, following the Hall-Petch equation.

Go to article

Authors and Affiliations

N. Izairi
F. Ajredini
A. Vevecka-Pfiftaj
P. Makreski
M.M. Ristova
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the effects of grain boundary structures on mechanical properties of nanocrystalline Al-0.7Mg-1.0Cu alloy using nanoindentation system. Grain boundary structure transforms to high angle grain boundaries from low angle ones with increase of heat treatment temperature and the transformation temperature is about 400℃. Young’s modulus and hardness are higher in sample with low angle grain boundaries, while creep length is larger in sample with high angle ones. These results indicate that progress of plastic deformation at room temperature is more difficult in sample with low angle ones. During compression test at 200℃, strain softening occurs in all samples. However, yield strength in sample with low angle grain boundaries is higher twice than that with high angle ones due to higher activation energy for grain boundary sliding.
Go to article

Bibliography

[1] J. Cintas, E.S. Caballero, J.M. Montes, F.G. Cuevas, C. Arevalo, Adv. Mater. Sci. Eng. 2014, 1 (2014).
[2] Y. Liu, Z. Han, H. Cong, Wear 268, 976 (2010).
[3] G . Jeong, J. Park, S. Nam, S.E. Shin, J. Shin, D. Bae, H. Choi, Archives of Metallurgy and Materials 60 (2), 1287 (2015).
[4] M. Yu. Gutkin, I.A. Ovid’ko, N.V. Skiba, Phys. Solid State 47, 1662 (2005).
[5] H. Van Swygenhoven, M. Spaczer, A. Caro, Acta Mater. 47, 3117 (1999).
[6] Y. Xun, M.J. Tan, K.M. Liew, Scripta Mater. 61 (1), 76 (2009).
[7] Y. Xun, M.J. Tan, K.M. Liew, J. Mater. Processing Tech. 162-163, 429 (2005).
[8] T.J. Rupert, J. Appl. Phys. 114, 033527 (2013).
[9] T.R. McNelly, D.L. Swisher, M.T. Perez-Prado, Metall. Mater. Trans. A 33, 279 (2002).
[10] Y. Rao, A.J. Waddon, R.J. Farris, Polymer 42 (13), 5925 (2001).
[11] A.C. Fisher-Crips, Nanoindentation, Springer-Verlag, New York 2002.
[12] M.S. Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Compos. B Eng. 175, 107153 (2019).
[13] S . Sinha, R. Mirshams, T. Wang, S. Nene, M. Frank, K. Liu, R. Mishra, Sci. Rep. 9, 6639 (2019).
[14] L. Melk, J.J.R. Rovira, F. García-Marro, M.-L. Antti, B. Milsom, M.J. Reece, M. Anglada Ceram. Int. 41, 2453 (2015).
[15] G . He, C. Xu, C. Liu, H. Liu, Mater. Des. 202, 109459 (2021).
[16] Q. Duan, H. Pan, B. Fu, J. Yan, Steel Res. Int. 2019, 1900317 (2019).
[17] C.S. Pande, K.P. Cooper, Prog. Mater. Sci. 54 (6), 689 (2009).
[18] C. Zheng, Y.W. Zhang, Mater. Sci. Eng. A 423 (1-2), 97 (2006).
[19] C.-W. Nan, X. Li, K. Cai, J. Tong, J. Mater. Sci. Letters 17 (22), 1917 (1998).
[20] M. Becton, X. Wang, Phys. Chem. Chem. Phys. 17, 21894 (2015).
[21] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A 265, 188 (1999).
[22] P .R. Rios, F.S. Jr, H.R.Z. Sandim, R.L. Plaut, A.F. Padiha, Mater. Research 8 (3), 225 (2005).
[23] AH. Cottrell In: Chalmers B, editor. Theory of dislocations, Progress in Metal Physics. 4, 251 (1953) London, Pergamon Press.
[24] R .W. Cahn, Proceedings of the Physical Society, Ser. AI. 63 (364), 323 (1950).
[25] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
[26] D. Jang, M. Atzmon, J. App. Phy. 93 (11), 9282 (2003).
Go to article

Authors and Affiliations

Jin Man Jang
1 2
ORCID: ORCID
Wonsik Lee
1
ORCID: ORCID
Se-Hyun Ko
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Tensile tests of 8009Al alloy reinforced with SiC and Al₂O₃ particles fabricated by powder metallurgy (PM) were conducted at temperatures of 250–350°C and strain rates of 0.001–0.1 s⁻¹. The ultimate tensile strength and yield strength of the samples decreased while the temperature and strain rate increased. The elongation slightly decreased at first and then increased with growing temperature because of the medium-temperature brittleness of the alloy matrix. When the strain rate was 0.1 s⁻¹, the elongation of the 8009Al/Al₂O₃ composites always decreased with an increase in temperature because of the poorly coordinated deformation and weak bonding between the matrix and Al₂O₃ particles at such a high strain rate. The work-hardening rates of the composites sharply increased to maxima and then decreased rapidly as the strain increased. Meanwhile, the 8009Al/SiCₚ composites displayed superior UTS, YS, elongation, and work-hardening rates than those of the 8009Al/Al₂O₃ composites under the same conditions. Compared to 8009Al alloys reinforced with spherical Al₂O₃ particle, 8009Al alloys reinforced with irregular SiC particles exhibited a better strengthening effect. The fracture mechanism of the 8009Al/SiCₚ composites was mainly ductile, while that of the 8009Al/Al₂O₃ composites was primarily debonding at the matrix–particle interfaces in a brittle mode.
Go to article

Bibliography

  1.  P.-h. Lü, X.F. Wang, C.G. Dong, C.Q. Peng, and R.C. Wang, “Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites,” J. Cent. South Univ., vol. 27, no. 9, pp. 2567–2577, 2020, doi: 10.1007/s11771-020-4482-z.
  2.  C. Emmy Prema, S. Suresh, G. Ramanan, and M. Sivaraj, “Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission,” Mater. Res. Express, vol. 7, no. 1, pp. 016524, 2020, doi: 10.1088/2053- 1591/ab6257.
  3.  S.V. Nair, J.K. Tien, and R.C. Bates, “SiC-reinforced aluminium metal matrix composites International Metals Reviews,” Int. Met. Rev., vol. 30, no. 1, pp. 275–290, 1985, doi: 10.1179/imtr.1985.30.1.275.
  4.  Q. Yan, D. Fu, X. Deng, H. Zhang, and Z. Chen, “Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures,” Mater. Charact., vol.  58, no. 6, pp. 575–579, 2007, doi: 10.1016/j.matchar.2006.06.024.
  5.  Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, and G. Chen, “Ambient temperature mechanical properties of Al-8.5Fe-1.3V-1.7Si/ SiC_P composite,” Mater. Sci. Eng. A, vol. A460‒61, no.  Jul, pp. p.180–185, 2007, doi: 10.1016/j.msea.2007.02.105.
  6.  D. Shimansky and H.J. McQueen, “Hot Working Of Heat Resistant Rapidly Solidified AI-Fe-V-Si Alloy,” High Temp. Mat., vol. 18, no. 4, pp. 241–252, 1999, doi: 10.1515/HTMP.1999.18.4.241.
  7.  S. Hariprasad, S. Sastry, and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7%Si alloy,” Acta. Mater., vol. 44, no. 1, pp. 383–389, 1995, doi: 10.1016/1359-6454(95)00160-1.
  8.  Y.D. Xiao, W. Wang, and L.I. Wen-Xian, “High temperature deformation behavior and mechanism of spray deposited Al-Fe-V-Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 17, no. 006, pp. 1175–1180, 2007, doi: 10.1016/S1003-6326(07)60245-3.
  9.  S. Sun, L. Zheng, P. Hui, and Z. Hu, “Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting,” Mater. Sci. Eng. A, vol. 659, no. 6, pp.  207–214, 2016, doi: 10.1016/j.msea.2016.02.053.
  10.  Y. He, H. Tu, B. Qiao, L. Feng, J. Yang, and Y. Sun, “Tensile fracture behavior of spray-deposited SiCP/Al–Fe–V–Si composite sheet,” Adv. Compos. Mater., vol. 22, no. 4, pp. 227–237, 2011, doi: 10.1080/09243046.2013.796626.
  11.  L. Hao, Y.Q. He, N. Wang, Z.H. Chen, Z.G. Chen, H.G. Yan, and Z.K. Xu, “The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited SiCP/Al–11.7Fe–1.3V–1.7Si Composite,” Adv. Compos. Mater., vol. 18, no. 4, pp.  351–364, 2009, doi: 10.1163/156855109X434766.
  12.  S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, “Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps,” Vacuum, vol. 149, pp. 297–305, 2018, doi: 10.1016/j.vacuum.2018.01.001.
  13.  C. Shuang, T. Jie, H. Luo, W. Yu, and Z. Hui, “Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites,” Mater. Sci. Eng. A, vol. 697, pp. 194–202, 2017, doi: 10.1016/j.msea.2017.05.016.
  14.  M.H. Guo, J. Y. Liu, C.C. Jia, Q.J. Jia, and S.J. Guo, “Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming,” J. Cent. South Univ., vol. 21, no. 11, pp. 4053–4058, 2014, doi: 10.1007/s11771- 014-2396-3.
  15.  H.S. Chen, W.X. Wang, H.H. Nie, J. Zhou, Y.L. Li, R.F. Liu, Y.Y. Zhang, and P. Zhang, “Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy,” J Alloys Compd., vol.  730, pp. 342–351, 2018, doi: 10.1016/j.jallcom.2017.09.312.
  16.  H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu, “The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites,” J. Alloy. Compd., vol. 632, pp. 23–29, 2015, doi: 10.1016/j.jallcom.2015.01.048.
  17.  H. Sun, X. Li, P. Zhang, and W. Fang, “The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy,” Mater. Sci. Eng. A, vol. 611, pp. 257–262, 2014, doi: 10.1016/j.msea.2014.06.009.
  18.  W. Zhang, D. Chai, G. Ran, and J.E. Zhou, “Study on microstructure and tensile properties of in situ fiber reinforced aluminum matrix composites,” Mater. Sci. Eng. A, vol. 476, no. 1/2, pp.  157–161, 2008, doi: 10.1016/j.msea.2007.05.018.
  19.  S. Ghanaraja, K.L.V. Kumar, K.S. Ravikumar, and B.M. Madhusudan, “Mechanical Properties of Al2O3 Reinforced Cast and Hot Extruded Al based Metal Matrix Composites,” Mater. Today: Proc., vol. 4, no. 2, Part A, pp. 2771–2776, 2017, doi: 10.1016/j.matpr.2017.02.155.
  20.  M. Sharififar and S. Mousavi, “Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature,” Mater. Sci. Eng. A, vol. 594, no. 1, pp. 118–124, 2014, doi: 10.1016/j.msea.2013.11.051.
  21.  D. Hull and D. J. Bacon, Introduction to Dislocations,4th Ed., 2001, Oxford.
  22.  H. Luo, J. Teng, S. Chen, Y. Wang, and H. Zhang, “Flow stress and processing map of a PM 8009Al/SiC particle reinforced composite during hot compression,” J. Mater. Eng. Perform., vol. 26, no.  10, pp. 4789–4796, 2017, doi: 10.1007/s11665-017-2963-5.
  23.  E. Bouchaud, L. Kubin, and H. Octor, “Ductility and dynamic strain ageing in rapidly solidified aluminium alloys. Metall Trans 22A:1021‒1028,” Metall. Trans. A, vol. 22, no. 5, pp. 1021–1028, 1991, doi: 10.1007/BF02661095.
  24.  D.M. Li and A. Bakker, “Temperature and strain rate dependence of the portevin-le chatelier effect in a rapidly solidified Al alloy,” Metall. Mater. Trans., vol. 26, no. 11, pp. 2873–2879, 1995, doi: 10.1007/BF02669645.
  25.  L. Yuan, W. Shi, Z. Zheng, and D. Shan, “Effect of the aspect ratio of whisker on work-hardening rate of as forged 2024Al/Al18B4O33w composite,” Mater. Charact., vol. 104, pp. 73–80, 2015, doi: 10.1016/j.matchar.2015.04.006.
  26.  W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, “Microstructures, tensile properties and work-hardening behavior of SiCp/Mg-Zn-Ca composites,” J. Alloy. Compd., vol. 695, pp. 2215–2223, 2016, doi: 10.1016/j.jallcom.2016.11.070.
  27.  T.S. Srivatsan, M. Al-Hajri, C. Smith, and M. Petraroli, “The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite,” Mater. Sci. Eng. A, vol. 346, no. 1–2, pp.  91–100, 2003, doi: 10.1016/S0921-5093(02)00481-1.
  28.  M. Vedani, F. D’Errico, and E. Gariboldi, “Mechanical and fracture behaviour of aluminium-based discontinuously reinforced composites at hot working temperatures,” Compos. Sci. Technol, vol.  66, no. 2, pp. 343–349, 2006, doi: 10.1016/j.compscitech.2005.04.045.
  29.  J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, and B.L. Dong, “Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment,” J. Mater. Eng. Perform., vol. 26, no. 4, pp. 1808–1816, 2017, doi: 10.1007/s11665-017-2627- 5.
  30.  B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, “High temperature deformation behavior of Al 2124-SiCp composite,” J. Mater. Process. Tech., vol. 63, no. 1–3, pp. 395–398, 1997, doi: 10.1016/S0924-0136(96)02653-2.
  31.  P. Yu et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 206–213, 2007, doi: 10.1016/j.msea.2006.08.077.
  32.  Y.K. Xu, M. Han, X. Jian, and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength,” Acta Mater., vol. 53, no. 6, pp. 1857–1866, 2005, doi: 10.1016/j.actamat.2004.12.036.
  33.  J. Fan, K. Zhnag, and L. Shi, “Interface Characterization of the SiCp/Al Composites Made by Powder Metallurgy,” J. Mater. Sci. Technol., vol. 15, no. 2, pp. 147–150, 1999, https://www.jmst.org/EN/abstract/abstract5749.shtml.
  34.  J.-Ch., Lee, and, J.-Y. Byun, S.-B. Park, and H.-I. Lee, “Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite,” Acta Mater., vol. 46, pp.  1771–1780, 1998, doi: 10.1016/S1359-6454(97)00265-6.
  35.  J.K. Park and J.P. Lucas, “Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3,” Scripta Mater., vol. 37, no. 4, pp. 511–516, 1997, doi: 10.1016/S1359-6462(97)00133-4.
  36.  J. Long-tao et al., “Microstructure and tensile properties of TiB2p/6061Al composites,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 8, pp. 542–546, 2009, doi: 10.1016/S1003-6326(10)60105-7.
  37.  B. Ogel and R. Gurbuz, “Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders,” Mater. Sci. Eng. A, vol. 301, no. 2, pp.  213–220, 2001, doi: 10.1016/S0921-5093(00)01656-7.
  38.  Y. Qiao et al., “Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy,” J. Mater. Sci. Technol., vol. 60, pp. 168–176, 2021, doi: 10.1016/j.jmst.2020.06.010.
  39.  Y.X. Qiao et al., “Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel With Hydrogen Charging,” JOM, vol. 73, no. 4, pp. 1165–1172, 2021, doi: 10.1007/s11837-021-04569-2.
  40.  J. Wu, Y. Qiao, Y. Chen, L. Yang, X. Cao, and S. Jin, “Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water,” J. Mater. Eng. Perform., vol. 30, pp. 3577–3585, 2021, doi: 10.1007/ s11665-021-05688-2.
  41.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with a rare-earth element addition by mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
Go to article

Authors and Affiliations

Shuang Chen
1
Guoqiang Chen
1
Pingping Gao
1 2
Chunxuan Liu
2
Anru Wu
1
Lijun Dong
1
Zhonghua Huang
1
Chun Ouyang
1 3 4
Hui Zhang
5

  1. Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, Xiangtan 411104, China
  2. Hunan Gold Sky Aluminum Industry High-tech Co., Ltd., Changsha 410205, China
  3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 21200, China
  4. CETC Maritime Electronics Research Institute Co., Ltd., Ningbo Zhejiang 315000, China
  5. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Download PDF Download RIS Download Bibtex

Abstract

The paper describes modification to Fm3–m (space group no. 225) lattice of aluminium based α-solid solution observed in Zn-Al alloys required to properly correlate quantitative data from X-ray diffraction analysis with results obtained from quantitative scanning electron microscopy image analysis and those predicted from Zn-Al binary phase diagram. Results suggests that 14 at.% of Zn as a solute atom should be introduced in crystal lattice of aluminium to obtain correct estimation of phase quantities determined by quantitative X-ray diffraction analysis. It was shown that this modification holds for Cu mould cast as well as annealed and water-cooled samples of Zn-3wt.%. Al and Zn-5wt.% Al.

Go to article

Authors and Affiliations

P. Gogola
Z. Gabalcová
H. Suchánek
M. Babinec
M. Bonek
M. Kusý
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the fatigue properties of newly used AlZn10Si8Mg aluminium alloy where the main aim was to determine the

fatigue strength and compare it with the fatigue strength of AlSi7Mg0.3 secondary aluminium alloys which is used in the automotive

industry for cyclically loaded components. AlZn10Si8Mg aluminium alloy, also called UNIFONT 90, is self-hardening (without heat

treatments), which contributes to economic efficiency. This is one of the main reasons why is compared, and may be an alternative

replacement for AlSi7Mg0.3 alloy which is heat treated to achieve required mechanical properties. The experiment results show that the

fatigue properties of AlZn10Si8Mg alloy are comparable, if not better, than AlSi7Mg0.3 alloy. Fatigue properties of AlZn10Si8Mg alloy

are achieved after seven days of natural ageing, immediately after casting and achieving value of fatigue strength is caused by structural

components formed during solidification of the melt.

Go to article

Authors and Affiliations

M. Vicen
E. Tillová
P. Fabian
Download PDF Download RIS Download Bibtex

Abstract

Two MgLiAl alloys of composition 4.5% Li and 1.5% Al (in wt.%) composed of α phase and of 9% Li, 1.5% Al composed of α (hcp) + β (bcc) phases were subjected to twist channel angular pressing (TCAP) deformation. Such deformation of α + β alloys caused less effective grain refinement than that of single α phase alloy. However, with increasing number of passes, grain size of single α phase alloy increased and that of β phase in two phase α + β alloy also grew, which suggested the effect of dynamic recrystallization. TEM studies allowed identifying particles of Li2MgAl phase of size of few μm. {001}<100> texture was observed in extruded alloy. Texture studies of extruded and TCAPed single phase hcp alloy indicated texture with {101 – 0} plane perpendicular to the extrusion direction and {0002} plane parallel to the extrusion direction. Duplex α + β alloys showed poor texture development.

Go to article

Authors and Affiliations

J. Dutkiewicz
S. Rusz
D. Kuc
O. Hilser
P. Bobrowski
B. Kania

This page uses 'cookies'. Learn more