Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The role of catalase in resistance to boron toxicity after melatonin application (MEL) was investigated in Arabidopsis thaliana plants. Col-0 and cat2-2 plants were exposed to 50 μM MEL followed by boron toxicity (BT) in a medium containing 10 mM H 3BO 3. Pigment loss and accordingly chlorosis were reduced by melatonin under BT conditions, while they were more prominent in cat2-2 mutants. Moreover, TBARS and H 2O 2 contents, which increased due to BT, decreased as a result of melatonin application and the levels of these parameters in cat2-2 mutants were higher than the values in Col-0. Antioxidant enzyme activity of SOD and SOD1 gen transcript were induced by MEL under BT. Conversely, APX4, PER10 and CAT1 transcripts were down-regulated by MEL under BT. In addition, antioxidant enzyme activities and their transcript levels were lower than those of Col-0. Thus, we suggested that MEL scavenged ROS directly under BT. Melatonin also reduced the accumulation of boric acid in leaf tissues of Col-0, but not cat2-2. Finally, even though melatonin application provided a degree of endurance, the cat2 mutation resulted in increased sensitivity to BT.
Go to article

Authors and Affiliations

Aykut Saglam
1 2
ORCID: ORCID
Asıye Sezgın Muslu
2
Cansu Altuntas
2
Mehmet Demıralay
2
Asım Kadıoglu
2

  1. Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61060, Trabzon, Turkey
  2. Department of Biology, Faculty of Science, Karadeniz Technical University, 61060, Trabzon, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Metallothioneins are low-molecular-weight proteins capable of covalently binding heavy metal ions due to the presence of many cysteine residues in their sequences. We analyzed the predicted amino acid sequences of 19 metallothionein (7 from Arabidopsis thaliana and 12 from Oryza sativa) and their promoter sequences in silico in order to determine the potential regulatory cis-elements present in the promoters of metallothionein genes, from which it is possible to determine the putative functions of these genes. The PlantCARE and PLACE databases provided information about the putative regulatory elements in the metallothionein promoters. Metal response element sequences were found in the promoters of eleven O. sativa and two Arabidopsis metallothionein genes. Copper response elements were identified in both model plants, usually in many copies, particularly in O. sativa. Both the high cysteine content and the presence of metal response motifs in the promoters support the suggestion that metallothioneins play a key role in metal detoxification. The most common putative element in the analyzed promoters was CIRCADIAN, which was present in five A. thaliana and eight O. sativa sequences. The methyl jasmonate response sequence, root-specific expression element and drought response element were found only in O. sativa metallothioneins. Light and low temperature response elements, biotic and abiotic stress elements, an abscisic acid-responsive element and an ethylene-responsive element occur in selected metallothionein promoters of both species. A few promoters have putative organ- and cell-specific regulatory elements. The presence of many different motifs in the promoters of the Arabidopsis and O. sativa genes implies that metallothioneins are general stress response proteins with many important functions in plants, including regulation of their normal development and adaptation to changing environmental conditions.

Go to article

Authors and Affiliations

Grażyna Dąbrowska
Download PDF Download RIS Download Bibtex

Abstract

Here we report the consequences of telomere erosion in Arabidopsis thaliana, studied by examining seed and pollen production and the course of male meiosis through the last five generations (G5-G9) of telomerase-deficient Arabidopsis mutants. We used a previously described mutant line in which telomerase activity was abolished by T-DNA insertion into the TERT gene encoding telomerase reverse transcriptase. Reduced fertility accompanied by morphological abnormalities occurred in G6, which produced on average 35 seeds per silique (vs. 43 in wild type) and worsened in G7 (30 seeds) and G8 (14 seeds), as did the morphological abnormalities. The last generation of tert mutants (G9) did not form reproductive organs. Analysis of meiosis indicated that the main cause of reduced fertility in the late generation tert mutants of Arabidopsis was the numerous chromosomal end-to-end fusions which led to massive genome rearrangements in meiocytes. Fusion of meiotic chromosomes began in G5 and increased in each of the next generations. Unpaired chromosomes (univalents) were observed in G7 and G8. The study highlights some differences in the meiotic consequences of telomere shortening between plant and animal systems.

Go to article

Authors and Affiliations

Jasna Puizina
Ivica Šamanić
Download PDF Download RIS Download Bibtex

Abstract

Light exposure is an important environmental factor which breaks seed dormancy in many plant species. Phytochromes have been identified as playing a crucial role in perception of the light signal that releases seed germination in Arabidopsis. Phototropins (Phot1, Phot2) are blue/UV-photoreceptors in plants which mediate phototropic responses, chloroplast relocation, hypocotyl growth inhibition and stomata opening. We studied germination under different light conditions in Arabidopsis Phot1-null and Phot2-null mutants and in a double phot1phot2 mutant. Germination of single phot1 and phot2 mutants in darkness was much lower than in wildtype (WT) seeds, whereas double phot1phot2 mutant lacking both functional phototropins germinated at frequency comparable to WT seeds, irrespective of light and temperature conditions. Light treatment of imbibed seeds was essential for effective germination of phot1, irrespective of low-temperature conditioning. In contrast, cold stratification promoted dark germination of phot2 seeds after imbibition in dim light. Low germination frequency of phot1 seeds under low light intensity suggests that the presence of functional Phot1 might be crucial for effective germination at these conditions. The lower germination frequency of phot2 seeds under continuous light suggests that Phot2 might be responsible for stimulating germination of seeds exposed to direct daylight. Thus, the phototropin system may cooperate with phytochromes regulating the germination competence of seeds under different environmental conditions

Go to article

Authors and Affiliations

Paweł Jedynak
Przemysław Malec
Beata Myśliwa-Kurdziel
Elżbieta Turek
Download PDF Download RIS Download Bibtex

Abstract

To understand the molecular mechanism controlling in vitro plant morphogenesis, a culture system enabling induction of alternative morphogenic pathways (somatic embryogenesis, SE; shoot organogenesis, ORG) in a well defined population of somatic cells is needed. Arabidopsis is the most useful model plant for genomic studies, but a system in which SE or ORG can be induced alternatively in the same type of explant has not been proposed. Immature zygotic embryos (IZEs) of Arabidopsis provide the only explants with embryogenic potential, and have been recommended for studying mechanisms of SE induced in vitro. This study was aimed at defining culture conditions promoting induction of alternative morphogenic pathways: shoot ORG in IZE explants. The established protocol involves pretreatment of IZE explants with liquid auxin-rich callus induction (CIM) medium, followed by subculture on solid cytokinin-rich shoot induction medium (SIM). The method enables efficient shoot induction in Columbia (Col-0) and Wassilewskija (Ws), genotypes commonly used in molecular studies. During 3 weeks of culture up to 90% of Col-0 and 70% of Ws explants regenerated shoots via an indirect morphogenic pathway. We analyzed the qRT-PCR expression patterns of the LEC (LEC1, LEC2 and FUS3) genes, the key regulators of Arabidopsis embryogenesis, in the IZE explants induced to promote shoot ORG. The sharp decline of LEC expression on SIM medium confirmed that culture of Arabidopsis IZE explants enables experimental manipulation of the morphogenic response of somatic cells. A scheme illustrating various in vitro morphogenic responses of IZEs in relation to hormonal treatment is presented.

Go to article

Authors and Affiliations

Małgorzata Kraut
Barbara Wójcikowska
Agnieszka Ledwoń
Małgorzata Gaj
Download PDF Download RIS Download Bibtex

Abstract

The Arabidopsis CDKG;2 gene encodes a putative cyclin-dependent Ser/Thr protein kinase of unknown biological function. This gene shows structural similarity to animal and human cyclin-dependent (PITSLRE) kinases. This study used the homozygous knockout cdkg;2 mutant based on T-DNA insertional line SALK_090262 to study the effect of mutation of the CDKG;2 gene on explant response and in vitro plant regeneration. For callus induction and proliferation, hypocotyls and cotyledons of 3-day-old seedlings of cdkg;2 and A. thaliana ecotype Col-0 were cultured on solid MS medium supplemented with 2,4-D (2 mg l-1). Organogenesis was induced after callus transfer on MS + TDZ (0.5 mg l-1). The initiation time of callus and shoot induction differed between the mutant and control cultures. Shoot regeneration after callus transfer on MS + TDZ was delayed in cdkg;2 (31 days versus 7 days in Col- 0). Shoots formed on callus derived from Col-0 hypocotyls but not on cotyledon-derived callus; in cdkg;2, shoots developed on both callus types. Mutant shoots did not form roots, regenerants were dwarfed, and inflorescences had small bud-like flowers with a reduced corolla and generative organs. Abnormalities observed during cdkg;2 organogenesis suggest a role of CDKG;2 as a regulator of adventitious root initiation

Go to article

Authors and Affiliations

Piotr Żabicki
Elżbieta Kuta
Monika Tuleja
Katarzyna Rataj
Przemysław Malec
Download PDF Download RIS Download Bibtex

Abstract

In flowering plants, seeds are produced both sexually (double fertilization is required) and asexually via apomixis (meiotic reduction and egg fertilization are omitted). An apomictic-like pattern of endosperm development in planta is followed by fis mutants of sexual Arabidopsis thaliana. In our experiments in planta, autonomous endosperm (AE) developed in met1 mutants. Furthermore we obtained autonomous endosperm formation in vitro not only in unfertilized ovules of fie mutants but also in wild genotypes (Col-0, MET1/MET1, FIE/FIE) and met1 mutants. AE induction and development occurred in all genotypes on the each of the media used and in every trial. The frequency of AE was relatively high (51.2% ovaries) and genotype-dependent. AE induced in vitro represents a more advanced stage of development than AE induced in fie mutants in planta. This was manifested by a high number of nuclei surrounded by cytoplasm and organized in nuclear cytoplasmic domains (NCDs), nodule formation, division into characteristic regions, and cellularization. The high frequency of AE observed in homozygous met1 (met1/met1) mutants probably is due to accumulation of hypomethylation as an effect of the met1 mutation and the in vitro conditions. AE development was most advanced in FIE/fie mutants. We suggest that changes in the methylation of one or several genes in the DNA of Arabidopsis genotypes caused by in vitro conditions resulted in AE induction and/or further AE development.

Go to article

Authors and Affiliations

Joanna Rojek
Elżbieta Kuta
Małgorzata Kapusta
Anna Ihnatowicz
Jerzy Bohdanowicz
Download PDF Download RIS Download Bibtex

Abstract

Self-incompatibility (SI) is a genetic system that promotes outcrossing by rejecting self-pollen. In the Brassicaceae the SI response is mediated by the pistil S-locus receptor kinase (SRK) and its ligand, pollen Slocus cysteine-rich (SCR) protein. Transfer of SRK-SCR gene pairs to self-fertile Arabidopsis thaliana enabled establishment of robust SI, making this transgenic self-incompatible A. thaliana an excellent platform for SI analysis. Here we report isolation of a novel A. thaliana self-incompatibility mutant, AtC24 SI mutant, induced by heavy-ion beam irradiation. We show that the AtC24 SI mutant exhibits breakdown of SI, with pollen hydration, pollen tube growth and seed set resembling the corresponding processes in wild-type (self-fertile) A. thaliana. Further reciprocal crosses indicated that some perturbed SI factor in the stigmatic cell of the AtC24 SI mutant is responsible for the observed phenotype, while the pollen response remained intact. Our results demonstrate successful application of heavy-ion beam irradiation to induce a novel A. thaliana self-incompatibility mutant useful for SI studies.

Go to article

Authors and Affiliations

Kok Song Lai
Takehisa Masatsugu

This page uses 'cookies'. Learn more