Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Mitigation of electromagnetic inference (EMI) is currently a challenge for scientists and designers in order to cope with electromagnetic compatibility (EMC) compliance in switching mode power supply (SMPS) and ensure the reliability of the whole system. Standard filtering techniques: passive and active ones present some insufficiency in terms of performance at high frequencies (HF) because analog components would no longer be controllable and this is mainly due to their parasitic elements. So developing EMI digital filters is very interesting, especially with the embedment of a machine control system on a field programmable gate array (FPGA) chip. In this paper, we present a design of an active digital EMI filter (ADF) to be integrated in a drive train system of an electric vehicle (EV). Hardware design as well as FPGA implementation issues have been presented to prove the efficiency of the developed digital filtering structure.

Go to article

Authors and Affiliations

Yosr Bchir
Soufien Gdaim
Hamza Djilali
Abdellatif Mtibaa
Download PDF Download RIS Download Bibtex

Abstract

Most automotive electronic components can cause electromagnetic interference, that can cause power electronic circuits to become unstable. As per electromagnetic compatibility (EMC) standards, these electronic circuits should meet the specifications which are not achieved under some conditions. In this paper, the conducted emissions (CEs) are generated due to the switching of a buck converter, which often occurs in automotive electronics. The noise source was found to be due to the presence of common mode currents which largely affects the performance of EMC. Two types of filtering techniques were analysed and designed, and the results were compared to find an effective filtering solution to mitigate the effects of CE due to a common mode noise for the frequency range from 150 kHz to 108 MHz according to the International Special Committee on Radio Interference (CISPR25) standard. The capacitive and parasitic impedance were calculated and then used in the simulation. Finally, the simulated and measured results are presented. The noise level can be minimized by as much as 50 dB, which is an efficient noise reduction value.
Go to article

Authors and Affiliations

G. V. Aswini
1
ORCID: ORCID
S. Chenthurpandian
1

  1. Department of Electronics and Communication Engineering, SNS College of Technology, Coimbatore-641035, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents the assessment of the levels of radiated electromagnetic interference by commercial UAVs in the context of their popular use for various military tasks. The test was conducted in the frequency range from 30 MHz to 6 GHz, in an electromagnetically anechoic chamber, in accordance with the procedures provided for this type of checks. Apart from the control frequencies (which of course exceed the standards), it can be said that most of the tested UAVs using brushless motors do not exceed the emission levels specified by the military standard MIL-STD-461G. This opens the way to the use of COTS UAV as a carrier of electronic systems for the tasks of recognizing sources of radio signals in the investigated band.
Go to article

Authors and Affiliations

Rafał Przesmycki
1
ORCID: ORCID
Jarosław Michalak
1
ORCID: ORCID

  1. Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more