Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel

superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1

hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC

calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance.

Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy

has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation

processes (γ′, γ′′) are probably occurring, resulting in a sudden increase in the observed heat capacity.

Go to article

Authors and Affiliations

R. Przeliorz
M. Góral
P. Gradoń
F. Binczyk
T. Mikuszewski
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a method for determination of the near-critical region boundary is proposed. The boundary is evaluated with respect to variations of specific heat capacity along isobars. It is assumed that the value of specific heat capacity inside the near-critical region exceeds by more than 50% the practically constant value typical for fluids under normal conditions. It appears that large variations of heat capacity are also present for high-pressure subcritical states sufficiently close to the critical point. Therefore, such defined near-critical region is located not only in supercritical fluid domain but also extends into subcritical fluid. As an example, the boundaries of the near-critical region were evaluated for water, carbon dioxide and R143a.

Go to article

Authors and Affiliations

Roman Kwidziński
Marian Trela
Dariusz Butrymowicz

This page uses 'cookies'. Learn more