Details

Title

A definition of near-critical region based on heat capacity variation in transcritical heat exchangers

Journal title

Archives of Thermodynamics

Yearbook

2011

Issue

No 2 August

Authors

Keywords

heat transfer ; Critical thermodynamic state ; Near-critical region ; Specific heat capacity

Divisions of PAS

Nauki Techniczne

Coverage

55-68

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-011-0009-1

Source

Archives of Thermodynamics; 2011; No 2 August; 55-68

References

(2010), Supercritical Coal Based Steam Cycles. ; Borsukiewicz-Gozdur A. (2009), Increasing of electricity generation capacity of biogas power generator by application of sub- and supercritical modules of Organic Rankine Cycle, Archives of Thermodynamics, 30, 4, 3. ; Angielczyk W. (2008), Analysis of transcritical CO<sub>2</sub> refrigeration cycle with two-phase ejector, null, 2, 403. ; Polyakov A. (1991), Advances in Heat Transfer, 21, 1. ; Hsu Y.-Y. (1976), Transport Processes in Boiling and Two-Phase Systems. Including Near-Critical Fluids. ; Kurganov V. (1998), Heat Transfer and Pressure Drop in Tubes under Supercritical Pressure of the Coolant. Part 1: Specifics of the Thermophysical Properties, Hydrodynamics and Heat Transfer of the Liquid. Regimes of Normal Heat Transfer, Thermal Engineering (English translation of Teploenergetika), 45, 3, 177. ; <i>REFPROP - Reference Fluid Thermodynamic and Transport Properties, Ver. 8.0</i>. National Institute of Standards and Technology (NIST), Boulder CO, 2007.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×