Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 79
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On 14 January 2021, the Polish Ministry of Climate and the Environment submitted for public consultation the draft Polish Hydrogen Strategy until 2030 with a perspective until 2040. The project defines goals and activities related to developing national competencies and technologies for building a low-emission hydrogen economy. The draft announces the preparation of the “Hydrogen Law”, which is to be a package of changes to currently existing acts, particularly the Polish Energy Law. However, the proposals presented in the strategy do not seem to be fully consistent with the vision of the development of the future regulation of the hydrogen market presented by the European Commission. The article presents the Polish Hydrogen Strategy’s most important assumptions regarding the proposed legislative changes and discusses them in the context of the European strategy. The main focus is on two aspects related to the planned legislative changes that seem to be the most important at this stage in order to stimulate the development of the hydrogen market: the definition of hydrogen and the decision upon which production methods will be supported, and the future regulation of the hydrogen market.
Go to article

Authors and Affiliations

Dagmara Dragan
1
ORCID: ORCID

  1. Faculty of Law and Administration, Adam Mickiewicz University in Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the era of the fight against global warming and in light of the search for energy with the least possible impact on the environment, interest in hydrogen has become a natural direction of development. Striving for a zero-emission Europe by 2050, the EU promotes low-emission and ultimately emission-free hydrogen for the widest possible use in the economy. Poland has developed a strategic document specifying the necessary activities for the use of hydrogen in the economy, which should at the same time maintain its competitiveness. Poland is currently the third producer of hydrogen in the European Union, which enables strategic thinking about maintaining Poland as a leading player on the hydrogen market in the long term. Currently, hydrogen in Poland is produced by (usually large) state-owned enterprises for their own needs with only a small margin of its resale. This is conventional hydrogen that is mainly obtained from natural gas. Therefore, it is difficult to talk about the hydrogen market, which must develop so that this raw material can be widely used in many branches of the modern economy. However, this requires taking a number of legislative, research and development and investment activities, as well as directing the national energy transformation to renewable energy sources, which may ultimately reduce the costs of pure hydrogen production. A number of actions have been taken, but the delay in legislative actions is slowing down the creation of the hydrogen market and is limiting the interest of private businesses in engaging in transformation activities.
Go to article

Authors and Affiliations

Aleksandra Komorowska
1
ORCID: ORCID
Eugeniusz Mokrzycki
1
ORCID: ORCID
Lidia Gawlik
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute PAS, Poland
Download PDF Download RIS Download Bibtex

Abstract

Energy from different sources is fundamental to the economy of each country. Bearing in mind the limited reserves of non-renewable energy sources and the fact that their production from new deposits is becoming less economically viable, attention is paid to alternative energy sources, particularly those that are readily available or require no substantial financial investment. One possible solution may be to generate hydrogen, which will then be used for heat (energy) production using other methods. At the same time, these processes will be characterized by low emission levels compared to conventional energy sources. In recent years, more and more emphasis has been placed on the use of clean energy from renewable sources. New, more technically and economically efficient technologies are being developed. The energy use worldwide comes mostly from fossil fuel processing. It can be observed that the share of RES in global production is growing every year. At the end of the 1990s, the share of renewable energy sources was at 6–7%. Global trends indicate the increasing demand for renewable energy due to its form. Global hydrogen resources are practically inexhaustible, but the problem is its availability in molecular form. The article analyzed the use of hydrogen as a fuel. The basic problem is the inexpensive and easy extraction of hydrogen from its compounds; attention has been paid to water, which can easily be electrolytically decomposed to produce oxygen and hydrogen. Hydrogen generated by electrolysis can be stored, but due to its physicochemical properties, it is a costly process; therefore, a decision was made that it is better to store it with natural gas or use it for further reaction. In addition, hydrogen can be used as a substrate for binding and converting the increasingly problematic carbon dioxide, thus reducing its content in the atmosphere.
Go to article

Authors and Affiliations

Tomasz Mirowski
Piotr Janusz
Download PDF Download RIS Download Bibtex

Abstract

The application of renewable energy sources poses the problems connected with output volatility. In order to decrease this effect the energy storage technologies can be applied, particularly fuel cells connected with hydrogen storage. In this paper the application of SOFC system for a household in Poland is proposed. Economic and technical analysis is performed. It was found that the proposed installation is profitable after 25 years of operation when compared with conventional solution - heat pumps and gas-fired boilers.

Go to article

Authors and Affiliations

Maciej Cholewiński
Łukasz Tomków
Download PDF Download RIS Download Bibtex

Abstract

The depletion of stocks of fossil fuels and the environment protection requirements increase the significance of hydrogen as a future energy carrier. The present research is focused on the development of new safe methods of production, transport and storage of hydrogen. The paper presents an analysis of problems related to the assessment of the effects of failure of hydrogen transporting pipelines. Scenarios of hazardous events connected with an uncontrollable leakage of hydrogen are discussed. The sizes of heat radiation and pressure wave hazard zones are determined.

Go to article

Authors and Affiliations

Andrzej Rusin
Katarzyna Stolecka
Download PDF Download RIS Download Bibtex

Abstract

Strategies and roadmaps are essential in areas that require long-term planning, such as the energy transition. Strategic plans can play an important role in developing visions for reducing CO2 emissions, developing renewable energy sources (RES) and hydrogen technologies. Hydrogen can be included in value chains in various sectors of the economy as raw material, emission-free fuel, or as an energy carrier and storage. The analysis of the future of hydrogen energy, which is an essential component of transforming the economy into an environmentally neutral one, is an integral part of the strategies of the European Union (EU) Member States.
This article reviews the strategic documents of the EU countries in the field of a hydrogen economy. Currently, six EU Member States have approved the hydrogen strategy (Germany, France, the Netherlands, Portugal, Hungary, Czech Republic), and two of them have roadmaps (Spain, Finland). The others are working on their completion in 2021. EU countries have the possibility of energy transformation based on a hydrogen policy, including green hydrogen, within the framework of the European Green Deal, i.e. aiming for climate neutrality and creating a modern and environmentally friendly economy.
By 2030, some of the countries plan to become a leader not only in the field of hydrogen production or RES development aimed at this process but also in the areas of research and development (R&D), sales of new technologies, and international cooperation. Member countries are focused on the production of clean hydrogen using electrolysis, creating incentives to stimulate demand, developing a hydrogen market, and implementing hydrogen infrastructure.
Go to article

Authors and Affiliations

Renata Koneczna
1
ORCID: ORCID
Justyna Cader
1 2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the problems limiting the use of vanadium as hydrogen permeable membranes is its high dilatation upon hydrogen dissolution in it. The information available for the dilatation coefficient value (Δυ/Ω) is contradictory, experimental information on the hydrogen solubility in vanadium within 100-1000 kPa at from 250 to 700°С is very limited. It does not enable to calculate the membrane dilatation. The article contains the measuring results for dilatation of strips made of vanadium foil 100 μm thick in a hydrogen atmosphere in the pressure range from 75 to 1000 kPa, temperatures from 250 to 700°С. The dilatation coefficient (Δυ/Ω) of polycrystalline vanadium was calculated based on the data obtained for dilatation and data previously published for the hydrogen concentration in the α-solid solution at 400°С. It is 0.165. Isobars for the temperature dependence of the hydrogen concentration in vanadium are calculated and constructed using the dilatation measuring results and the dilatation coefficient values. These data are agreed with theoretical and experimental data published previously. The limiting change in concentration and linear dimensions over the cross section of a hydrogen-permeable membrane from V was estimated at various temperatures and operating pressures at the membrane outlet based on the isobars plotted for temperature dependences of the CH/V. The conclusions are made on the optimal working conditions of Pd/V/Pd membranes when hydrogen is released from hydrogen-containing gas mixtures in accordance with Fick’s 1st law and data published previously for hydrogen concentration value at which solid hydrogen solutions in vanadium become brittle.
Go to article

Authors and Affiliations

A. Panichkin
1
ORCID: ORCID
A. Mamaeva
1
ORCID: ORCID
A. Kenzhegulov
1
ORCID: ORCID
Z. Karboz
1
ORCID: ORCID

  1. Satbayev University; Engineer of Laboratory Metallurgical Sciences, Institute of Metallurgy and Ore Beneficiation, 050010, Almaty City, Shevchenko str., 29/133, The Republic of Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
Go to article

Authors and Affiliations

Tomasz Bury
Download PDF Download RIS Download Bibtex

Abstract

The paper describes a fuel cell based system and its performance. The system is based on two fuel cell units, DC/DC converter, DC/AC inverter, microprocessor control unit, load unit, bottled hydrogen supply system and a set of measurement instruments. In the study presented in the paper a dynamic response of the proton exchange membrane (PEM) fuel cell system to unit step change load as well as to periodical load changing cycles in the form of semi-sinusoidal and trapezoidal signals was investigated. The load was provided with the aid of an in-house-developed electronic load unit, which was fully PC controlled. The apparatus was commissioned by testing the steady-state operation of the module. The obtained efficiency of the fuel cell shows that the test apparatus used in the study provides data in substantial agreement with the manufacturer’s data.

Go to article

Authors and Affiliations

Janusz T. Cieśliński
Tomasz Z. Kaczmarczyk
Bartosz Dawidowicz
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.

Go to article

Authors and Affiliations

Janusz Kotowicz
Łukasz Bartela
Klaudia Dubiel-Jurgaś
Download PDF Download RIS Download Bibtex

Abstract

Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure.

Go to article

Authors and Affiliations

Magdalena Orszulik
Adam Fic
Tomasz Bury
Jan Składzień
Download PDF Download RIS Download Bibtex

Abstract

Titania nanotube (TNT) arrays fabricated by anodizing of titanium foil in organic (ethylene glycol) and inorganic (phosphoric acid) electrolytes and thermally modified in argon revealed much improved properties to detect hydrogen peroxide. Horseradish peroxidase and acetate thionine co-absorbed by a dip coating on the TNT electrode were used to detect hydrogen peroxide in phosphate buffered saline. The morphology and electrochemical properties of TNT arrays were studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. Well defined oxidation and reduction peaks for potassium ferricyanide have been observed for TNT formed in ethylene glycol and annealed in argon. TNT arrays formed in organic electrolyte and annealed in argon indicated more favorable adsorption and electrochemical properties what was confirmed by detection of hydrogen peroxide towards analyte in phosphorate buffered saline solution.
Go to article

Authors and Affiliations

K. Arkusz
E. Krasicka-Cydzik
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory-scale tests of Polish hard coal steam gasification process combined with CO2 capture by absorption on CaO in a single step. Polish coal mine Piast was selected as a coal samples supplier based on the coal resources, quality, price and reactivity which makes it a potential supplier for a future full-scale gasification system. Steam gasification tests were conducted in a vertical fixed bed reactor at the temperature range of948-I I 73K in three series: with addition of CaO layered on a coal sample (II), mixed with a coal sample (111) and without adding CaO (I). The CaO increased both the hydrogen yield and content in gaseous products mixture in comparison with series l. As expected, mixing of CaO with coal sample improved the effects in terms of hydrogen yield and concentration in outlet gas when compared with CaO layered on a coal sample. An effective CO2 absorption was observed in tests with CaO mixed with a coal sample and at relatively low temperatures. At higher temperatures a reaction resulting in CO2 concentration increase in the produced gas mixture was observed.
Go to article

Authors and Affiliations

Adam Smoliński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Is hydrogen the answer, and if so, which technologies? Here we present an overview of “everything you need to know” about this promising new global energy source.
Go to article

Authors and Affiliations

Tadeusz Chmielniak
1

  1. Faculty of Environmental and Power Engineering, Silesian University of Technology in Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

A series of steps taken to determine a kinetic equation that describes hydrogenation of propene on nickel catalyst is presented in this study. Mixed factorial design approach, belongs to designing of experiments methods was used to plane experiments. The investigations showed that the method applied makes possible determination of the kinetic equation in a relatively fast and cheap manner since only a few measurement points is required. The equation obtained was verified experimentally and statistically. Both tests showed satisfactory precision of anticipated values of the process rate.
Go to article

Bibliography

Aaserud C., Hilmen A.-M., Bergene E.S.E., Schanke D., Holmena A., 2004. Hydrogenation of propene on cobalt Fischer–Tropsch catalysts. Catal. Lett., 94, 171–176. DOI: 10.1023/B:CATL.0000020541.28174.c7.
Ahmadigoltapeh, S., Mehranbod, N., Halimejani, H.Z., 2015. Propylene hydrogenation through structured and con- ventional catalyst beds: Experiment and modelling. J. Nat. Gas Sci. Eng., 27, 822–830. DOI: 10.1016/j.jngse.2015.09.030.
Brandao L., Fritsch D., Madeira LM., Mendes A.M., 2004. Kinetics of propylene hydrogenation on nanostructured palladium clusters. Chem. Eng. J., 103, 89–97. DOI: 10.1016/j.cej.2004.07.008.
Carturan G., Enzo S., Ganzerla R., Lenarda M., Zanoni R., 1990. Role of solid-state structure in propene hydro- genation with nickel catalysts. J. Chem. Soc. Faraday Trans., 86, 739–746. DOI: 10.1039/ft9908600739.
Esfe M.H.,. Rsotamian H, Shabani-Samghabadi A., Arani A.A.A., 2017. Application of three-level general fac- torial design approach for thermal conductivity of MgO/ water nanofluids. Appl. Therm. Eng., 127, 1194–1199. DOI: 10.1016/j.applthermaleng.2017.07.211.
Montgomery D.C., 2017. Design and analysis of experiments. 9th ed., Wiley.
Özbay N., Yargıç A.Ş., Yarbay-Şahin R.Z., Önal E., 2013. Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J. Chem., 234904. DOI: 10.1155/2013/234904.
Pachulski A., Schödel R., Claus P., 2012. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne. Appl. Catal., A, 445–446, 107–120. DOI: 10.1016/j.apcata.2012.08.018.
Schweitzer NM., Hu B., Das U., Hacksung K., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S., 2014. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal., 4, 1091–1098. DOI: 10.1021/cs401116p.
Sen G.A., 2016. Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator. Minerals, 6, 5. DOI: 10.3390/min6010005.
Szukiewicz M., Chmiel-Szukiewicz E., Kaczmarski K., Szałek A., 2019. Dead zone for hydrogenation of propylene atalyst pellets. Open Chem., 17, 295–301. DOI: 10.1515/chem-2019-0037.
Go to article

Authors and Affiliations

Adrian Szałek
1
Mirosław Szukiewicz
1
Elżbieta Chmiel-Szukiewicz
1

  1. Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The hydrogen embrittlement of metals is caused by the penetration and accumulation of hydrogen atoms inside the metal. The failure of the product due to hydrogen embrittlement is delayed in time and does not occur immediately after its manufacture, but several hours, days, or even weeks later. Therefore, the chances of detecting hydrogen embrittlement when checking the quality of the finished product are very slim. The use of high-strength bolts in industry is associated with the risk of hydrogen embrittlement. This phenomenon poses a threat to the safe use of devices by limiting or completely losing the functionality of the bolt joint. Even a low influence of moisture can trigger failure mechanisms.
The article proposes a method for assessing the risk of hydrogen embrittlement for high-strength bolts in class12.9. For this purpose, bolts made of material grade 32CrB4 were prepared and in a controlled manner the grain flow inconsistency was made, leading in extreme cases to the production of the forging lap. To perform the study, the device proposed by the European Assessment Document (EAD) was adapted to the testing of hydrogen embrittlement of threaded fasteners in concrete. The concrete substrate was replaced with metal spacers that were preloaded with a bolt. The use of the wedge distance under the bolt head led to the generation of two stress states – tensile and compressive, which translated into an increased risk of hydrogen embrittlement. After being tested, the bolts were visually and microscopically inspected to assess potential locations for cracks and hydrogen propagation. As a result of the conducted tests, it was found that the prepared test method allows to assess the resistance or susceptibility of the bolt to threats related to hydrogen embrittlement.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o.o. Oddział w Łańcucie, Rzeszów University of Technology
  2. Rzeszów University of Technology, Departament of Materials Forming and Processing, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Many modern processes for the production and casting of metals and their alloys are carried out in protective gas atmospheres, which protect them, for example, from oxygen pollution. This applies, for example, to titanium, magnesium or aluminum alloys. Most liquid alloys are comprised of constituents that differ in vapor pressures, resulting in harmful phenomenon during melting due to evaporation of some of its components. This harmful process may be limited by the selection of a suitable gas atmosphere in which the liquid metal treatment process is carried out. In the paper, results of study on the impact of the type of gas atmosphere on the rate of evaporation of zinc in argon – hydrogen mixtures are presented. It should be noted that such mixtures are used, for example, in metal welding processes, in which it is also possible to evaporate a component of the so-called liquid metal pool. The research results showed that the rate of zinc evaporation increases with the increase of hydrogen content in the gas atmosphere.
Go to article

Authors and Affiliations

T. Matuła
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The advancement of contemporary internal combustion engine technologies necessitates not only design enhancements but also the exploration of alternative fuels or fuel catalysts. These endeavors are integral to curbing the emission of hazardous substances in exhaust gases. Most contemporary catalyst additives are of complex chemical origins, introduced into the fuel during the fuel preparation stage. Nonetheless, none of these additives yield a significant reduction in fuel consumption. The research endeavors to develop the fuel system of a primary marine diesel engine to facilitate the incorporation of pure hydrogen additives into diesel fuel. Notably, this study introduces a pioneering approach, employing compressed gaseous hydrogen up to 5 MPa as an additive to the principal diesel fuel. This method obviates the need for extensive modifications to the ship engine fuel equipment and is adaptable to modern marine power plants. With the introduction of modest quantities of hydrogen into the primary fuel, observable shifts in the behavior of the fuel equipment become apparent, aligning with the calculations outlined in the methodology. The innovative outcomes of the experimental study affirm that the mass consumption of hydrogen is contingent upon the hydrogen supply pressure, the settings of the fuel equipment, and the structural attributes of the fuel delivery system. The modulation of engine load exerts a particularly pronounced influence on the mass admixture of hydrogen. The proportion of mass addition of hydrogen in relation to the pressure of supply (ranging from 4–12 MPa) adheres to a geometric progression (within the range of 0.04–0.1%). The application of this technology allows for a reduction in the specific fuel consumption of the engine by 2–5%, contingent upon the type of fuel system in use, and concurrently permits an augmentation in engine power by up to 5%. The resultant economic benefits are estimated at 1.5–4.2% of the total fuel expenses. This technology is applicable across marine, automotive, tractor, and stationary diesel engines. Its implementation necessitates no intricate modifications to the engine design, and its utilization demands no specialized skills. It is worth noting that, in addition to hydrogen, other combustible gases can be employed.
Go to article

Authors and Affiliations

Denys Shalapko
1
Mykola Radchenko
1
Anatoliy Pavlenko
2
ORCID: ORCID
Roman Radchenko
1
Andrii Radchenko
1
Maxim Pyrysunko
1

  1. Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
  2. Kielce University of Technology, Department of Building Physics and Renewable Energy, Aleja Tysia˛clecia Pan´stwa Polskiego 7,25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Current efforts are taken to increase resource efficiency, close material loops, and improve sustainable waste and by-products management. Thus, networking agro-food by-products andc onverting them into valuable products completely exhausting the potential of the raw material becomes significant. Model lignocellulosic and starch based biomass were subjected to pre-treatment with the application of acidic compounds, i.e. sulphuric (SA) and acetic (AA) acids. The response, i.e. total sugar content and derivatives content is investigated depending on variables changed during hydrolysis: concentration of acid, process duration, temperature and the size of the biomass particles. After saccharification, the hydrolysates were analysed via HPLC. Total reducing sugars concentration was in the range of 0.1 – 15.53 g/LAmong the substances present in the hydrolysates, protein, peptides, hydroxybenzyl acid (HA), 5-HMF, furfural (FF), vanillin (V), vanillic acid (VA), formic acid (FA) and levulinic acid (LA) were found in the range of 0.44 – 9.05 g/L and determined as total derivatives concentration. The aim of the study was to evaluate the measurable effects of the research and deliver information about the statistically important parameters for the process course and relations between the variables.
Go to article

Authors and Affiliations

Karolina Kucharska
1
ORCID: ORCID
Patrycja Makoś-Chełstowska
1
ORCID: ORCID
Edyta Słupek
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The production of biohydrogen from food waste (FW) by dark fermentation (DF) is a promising technology for commercialisation, as it is both a clean fuel and a suitable means of sustainable waste management. The described experiments compared the biohydrogen production yields obtained after the use of inoculum from two different sources: digested sludge from the wastewater treatment plant (WWTP) in Lodz and sludge from the anaerobic treatment of dairy industry wastewater (DIW) (unconcentrated and double-concentrated). In addition, the effect of different temperatures (70, 90 and 121°C) of inoculum pretreatment on the biohydrogen production in DF was tested. The process was carried out batchwise at 37°C. The highest yield of hydrogen production was obtained after the inoculum pretreatment at 70°C. In addition, a higher amount of hydrogen could be obtained by using sludge from the WWTP as the inoculum (96 cm3 H2/gTVSFW) than unthickened sludge from the DIW (85 cm 3 H 2/g TVSFW). However, after thickening the sludge from the dairy industry, and at the same time balancing the dry matter of both sludges, the hydrogen production potential was comparable for bothsludges (for the WWTP sludge – 96 and for the DIW sludge – 93 cm 3 H 2/g TVSFW). The kinetics of hydrogen production was described by modified Gompertz equation, which showed a good fit (determination coefficient R2 between 0.909 and 0.999) to the experimental data.
Go to article

Authors and Affiliations

Marlena Domińska
1
ORCID: ORCID
Katarzyna Paździor
1
ORCID: ORCID
Radosław Ślęzak
1
ORCID: ORCID
Stanisław Ledakowicz
1
ORCID: ORCID

  1. Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wolczanska Street, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen-based power engineering has great potential for upgrading present and future structures of heat and electricity generation and for decarbonizing industrial technologies. The production of hydrogen and its optimal utilization in the economy and transport for the achievement of ecological and economic goals requires a wide discussion of many technological and operational – related issues as well as intensive scientific research. The introductory section of the paper indicates the main functions of hydrogen in the decarbonization of power energy generation and industrial processes, and discusses selected assumptions and conditions for the implementation of development scenarios outlined by the Hydrogen Council, 2017 and IEA, 2019. The first scenario assumes an 18% share of hydrogen in final energy consumption in 2050 and the elimination 6 Gt of carbon dioxide emissions per year. The second document was prepared in connection with the G20 summit in Japan. It presents the current state of hydrogen technology development and outlines the scenario of their development and significance, in particular until 2030. The second part of the paper presents a description of main hybrid Power-to-Power, Power-to-Gas and Power-to-Liquid technological structures with the electrolytic production of hydrogen from renewable sources. General technological diagrams of the use of water and carbon dioxide coelectrolysis in the production of fuels using F-T synthesis and the methanol production scheme are presented. Methods of integration of renewable energy with electrolytic hydrogen production technologies are indicated, and reliability indicators used in the selection of the principal modules of hybrid systems are discussed. A more detailed description is presented of the optimal method of obtaining a direct coupling of photovoltaic (PV) panels with electrolyzers.

Go to article

Authors and Affiliations

Tadeusz Chmielniak
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, hydrogen is considered a potential successor to the current fossil-fuel-based energy. Within a few years, it will be an essential energy carrier, and an economy based on hydrogen will require appropriate hydrogen storage systems. Due to their large capacity, underground geological structures (deep aquifers, depleted hydrocarbon fields, salt caverns) are being considered for hydrogen storage. Their use for this purpose requires an understanding of geological and reservoir conditions, including an analysis of the preparation and operation of underground hydrogen storage. The results of hydrogen injection and withdrawal modeling in relation to the deep Lower Jurassic, saline aquifer of the Konary geological structure (trap) are presented in this paper. A geological model of the considered structure was built, allowable pressures were estimated, the time period of the initial hydrogen filling of the underground storage was determined and thirty cycles of underground storage operations (gas injection and withdrawal) were simulated. The simulations made it possible to determine the essential parameters affecting underground hydrogen storage operation: maximum flow rate of injected hydrogen, total capacity, working gas and cushion gas capacity. The best option for hydrogen storage is a two-year period of initial filling, using the least amount of cushion gas. Extracted water will pose a problem in relation to its disposal. The obtained results are essential for the analysis of underground hydrogen storage operations and affect the economic aspects of UHS in deep aquifers.
Go to article

Authors and Affiliations

Katarzyna Luboń
1
ORCID: ORCID
Radosław Tarkowski
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to examine the impact of the hydrogen blended natural gas on the linepack energy under emergency scenarios of the pipeline operation. Production of hydrogen from renewable energy sources through electrolysis and subsequently injecting it into the natural gas network, gives flexibility in power grid regulation and the energy storage. In this context, knowledge about the hydrogen percentage content, which can safely effect on materials in a long time steel pipeline service during transport of the hydrogen-natural gas mixture, is essential for operators of a transmission network. This paper first reviews the allowable content of hydrogen that can be blended with natural gas in existing pipeline systems, and then investigates the impact on linepack energy with both startup and shutdown of the compressors scenarios. In the latter case, an unsteady gas flow model is used. To avoid spurious oscillations in the solution domain, a flux limiter is applied for the numerical approximation. The GERG-2008 equation of state is used to calculate the physical properties. For the case study, a tree-topological high pressure gas network, which have been inservice for many years, is selected. The outcomes are valuable for pipeline operators to assess the security of supply.
Go to article

Authors and Affiliations

Maciej Witek
1
Ferdinand Uilhoorn
1

  1. Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study explores the hydrogen embrittlement behaviour of two Ni-based superalloys using electrochemical hydrogen charging. Two types of tensile specimens with different geometry for the Haynes 617 and Hastelloy X alloys were electrochemically hydrogen-charged, and then a slow strain rate test was conducted to investigate the hydrogen embrittlement behaviour. Unlike the ASTM standard specimens, two-step dog-bone specimens with a higher surface-area-to-volume ratio showed higher sensitivity to hydrogen embrittlement because hydrogen atoms are distributed mostly on the surface area. On the other hand, the Haynes 617 alloy had a lower hydrogen embrittlement resistance than that of the Hastelloy X alloy due to its relatively large grain size and the presence of precipitates at grain boundaries. The Haynes 617 alloy primarily showed an intergranular fracture mode with cracks from the slip band, whereas the Hastelloy X alloy exhibited a combination of transgranular and intergranular fracture behavior under hydrogen-charged conditions.
Go to article

Authors and Affiliations

Jae-Yun Kim
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

This page uses 'cookies'. Learn more