Thermodynamic consequences of hydrogen combustion within a containment of pressurized water reactor

Journal title

Archives of Thermodynamics




No 4 December



Nuclear reactor ; LOCA ; Hydrogen ; Combustion ; Containment

Divisions of PAS

Nauki Techniczne




The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences




Artykuły / Articles


DOI: 10.2478/v10173-011-0032-2


Archives of Thermodynamics; 2011; No 4 December; 67-79


Preusser G. (1996), Concept for the analysis of hydrogen problems in nuclear power plants after accidents, null, 113. ; OECD/NEA: <i>SOAR on containment thermalhydraulics and hydrogen distribution.</i> Report NEA/CSNI(R)99/16. Paris 1999. ; De Boeck B.: <i>Introduction to severe accidents. Especially the containment behaviour.</i> AIB VINCOTTE NUCLEAR report AVN 97/013. See also: <a target="_blank" href=''></a> ; OECD/NEA: <i>PWR fuel behaviour in design basis accident conditions.</i> Report CSNI86/129, Paris 1986. ; OECD/NEA: <i>Source term assessment, containment atmosphere control systems and accident consequences.</i> Report CSNI87/135, Paris 1987. ; Fic A. (1993), Mathematical model of transient thermal and flow processes in containment of a PWR nuclear reactor, Archiwum Energetyki, XXXII, 1-2, 19. ; Skorek J. (1994), Thermal analysis of the loss-of-coolant accident within the containment of the WWER-440 and WWER-1000 nuclear reactors, Computer Assisted Mechanics and Engineering Sciences, 1, 217. ; Bury T.: <i>Analysis of thermal and flow processes within containments of water nuclear reactors during loss-of-coolant accidents.</i> PhD thesis, Institute of Thermal Technology, Silesian University of Technology, Gliwice 2005. ; <i>Micro-Simulation Technology. PCTRAN/PWR - Personal Computer Transient Analyzer for a Two-loop PWR.</i> Micro-Simulation Technology, Montville, New Jersey, 2004. ; Florida Power&Light Company: <i>Final safety analysis report for Turkey Point unit 3 and 4.</i> Biscayne Bay, Florida, 1997. ; Bury T. (2004), Prediction of hydrogen concentration during LOCA within the VVER 440/213 containment, null. ; Deng J. (2008), A study on evaluating a passive autocatalytic recombiner PAR-system in the PWR large-dry containment, Nuclear Engineering and Design, 238, 2554,

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China