Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, Lagrange’s equations along with the Ritz method are used to obtain the equation of motion for a flexible, slender cylinder subjected to axial flow. The cylinder is supported only by a translational and a rotational spring at the upstream end, and at the free end, it is terminated by a tapering end-piece. The equation of motion is solved numerically for a system in which the translational spring is infinitely stiff, thus acting as a pin, while the stiffness of the rotational spring is generally non-zero. The dynamics of such a system with the rotational spring of an average stiffness is described briefly. Moreover, the effects of the length of the cylinder and the shape of the end-piece on the critical flow velocities and the modal shapes of the unstable modes are investigated.

Go to article

Authors and Affiliations

Mojtaba Kheiri
Download PDF Download RIS Download Bibtex

Abstract

The authors present a concept of constructing the equations of motion for a single-bucket pulling excavator in terms of generalised Lagrange's variables. The applied model is based on the assumption that the excavator is a system of rigid solids connected with rotational constrains of ten degrees of freedom. The essence of the proposed algorithm consists in reducing the procedure of constructing the system of excavator's motion equations to multiplication of adequate matrices. One avoids analytical or numerical derivation of the consecutive time derivatives of kinetic and potential energy of the system. The algorithm formulated in such a way may constitute a basis for constructing a numerical program for the analysis of excavator system dynamics. The proposed method of generation of Lagrange's equations can be generalised and applied to a wider class of multibody systems.
Go to article

Authors and Affiliations

Stanisław Konopka
Franciszek Kuczmarski
Andrzej Sławiński
Józef Wrona

This page uses 'cookies'. Learn more