Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo and Riemann-Liouvile equations and we also show an explicit formula for the solution of systems of time-invariant Caputo equations.

Go to article

Authors and Affiliations

P.T. Anh
A. Babiarz
A. Czornik
M. Niezabitowski
S. Siegmund
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2 type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.
Go to article

Authors and Affiliations

Piotr Kiełczyński
Marek Szalewski
Andrzej Balcerzak
Krzysztof Wieja

This page uses 'cookies'. Learn more