Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article investigates identification of aircraft aerodynamic derivatives. The identification is performed on the basis of the parameters stored by Flight Data Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dynamics is described by a parametric model that is defined in Body-Fixed-Coordinate System. Identification of the aerodynamic derivatives is obtained by Maximum Likelihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algorithm is used. Additional effects due to process noise are included in the state-space representation. The impact of initial values on the solution is discussed. The presented method was implemented in Matlab R2009b environment.

Go to article

Authors and Affiliations

Piotr Lichota
Maciej Lasek
Download PDF Download RIS Download Bibtex

Abstract

We develop and study in detail a new family of distributions called Half-logistic Odd Power Generalized Weibull-G (HLOPGW-G) distribution, which is a linear combination of the exponentiated-G family of distributions. From the special cases considered, the model can fit heavy tailed data and has non-monotonic hazard rate functions. We further assess and demonstrate the performance of this family of distributions via simulation experiments. Real data examples are given to demonstrate the applicability of the proposed model compared to several other existing models.
Go to article

Authors and Affiliations

Peter O. Peter
1
Fastel Chipepa
1
Broderick Oluyede
1
Boikanyo Makubate
1

  1. Department of Mathematics & Statistical Sciences, Faculty of Science, Botswana International University of Science & Technology, Palapye, Botswana
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to introduce and study a new generated family of distributions based on the type II transformation which is called the type II exponentiated half-logistic-Gompertz-Topp-Leone-G (TIIEHL-Gom-TL-G) family of distributions. We investigate its general mathematical properties, including, hazard rate function, quantile function, moments, moment generating function, Rényi entropy and order statistics. Parameter estimates of the new family of distributions are obtained based on the maximum likelihood estimation method and their performance is evaluated via a simulation study. For illustration of the applicability of the new family of distributions, four real data sets are analyzed.
Go to article

Authors and Affiliations

Broderick Oluyede
1
Thatayaone Moakofi
1

  1. Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
Download PDF Download RIS Download Bibtex

Abstract

The determination of precise emitter location is a very important task in electronic intelligence systems. Its basic requirements include the detection of the emission of electromagnetic sources (emitters), measurement of signal parameters, determining the direction of emitters, signal analysis, and the recognition and identification of their sources. The article presents a new approach and algorithm for calculating the location of electromagnetic emission sources (radars) in a plane based on the bearings in the radio-electronic reconnaissance system. The main assumptions of this method are presented and described i.e. how the final mathematical formulas for calculating the emitter location were determined for any number of direction finders (DFs). As there is an unknown distance from the emitter to the DFs then in the final formulas it is stated how this distance should be calculated in the first iteration. Numerical simulation in MATLAB showed a quick convergence of the proposed algorithm to the fixed value in the fourth/fifth iteration with an accuracy less than 0.1 meter. The computed emitter location converges to the fixed value regardless of the choice of the starting point. It has also been shown that to precisely calculate the emitter position, at least a dozen or so bearings from each DFs should be measured. The obtained simulation results show that the precise emitter location depends on the number of DFs, the distances between the localized emitter and DFs, their mutual deployment, and bearing errors. The research results presented in the article show the usefulness of the tested method for the location of objects in a specific area of interest. The results of simulation calculations can be directly used in radio-electronic reconnaissance systems to select the place of DFs deployment to reduce the emitter location errors in the entire reconnaissance area.
Go to article

Bibliography

[1] Willey, R. G. (1985). Electronic Intelligence: The Interception of Radar Signals. Artech House.
[2] Oshman, Y., & Davidson, P. (1999). Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems, 35(3), 892–902. https://doi.org/10.1109/7.784059
[3] Tehrani, M. A., Laurin, J. J., & Savaria, Y. (2016). Multiple targets direction-of-arrival estimation in frequency scanning array antennas. IET Radar, Sonar & Navigation, 10(3), 624–631. https://doi.org/10.1049/iet-rsn.2015.0401
[4] Rutkowski, A., & Kawalec, A. (2020). Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle. Sensors, 20(18), 5186. https://doi.org/10.3390/s20185186
[5] Wang, Y., Jie, H., & Cheng, L. (2019). A Fusion Localization Method based on a Robust Extended Kalman Filter and Track-Quality forWireless Sensor Networks. Sensors, 19(16), 3638. https://doi.org/10.3390/s19173638
[6] Chow, T. L. (2001). Passive emitter location using digital terrain data [Doctoral dissertation, Binghamton University State University of New York].
[7] Poisel, R. A. (2012). Electronic Warfare Target Location Methods (2nd. ed.). Artech House.
[8] Willey, R. G. (2006). ELINT. The Interception and Analysis of Radar Signals. Horizon House Publications.
[9] Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 1905–1915. https://doi.org/10.1109/78.301830
[10] Bugaj, J., & Górny, K. (2019, March). Analysis of estimation algorithms for electromagnetic source localization. In XII Conference on Reconnaissance and Electronic Warfare Systems (Vol. 11055, p. 110550W). International Society for Optics and Photonics. https://doi.org/10.1117/12.2524927
[11] O’Connor, A., Setlur, P., & Devroye, N. (2015). Single-sensor RF emitter localization based on multipath exploitation. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 1635–1651. https://doi.org/10.1109/TAES.2015.120807
[12] Adamy, D. L. (2001). EW 101. A First Course in Electronic Warfare. Artech House. [13] Adamy, D. L. (2004). EW 102. A Second Course in Electronic Warfare. Horizon House Publications.
[14] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[15] Foy, W. H. (1976). Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-12(2), 187–194. https://doi.org/10.1109/TAES.1976.308294
[16] Mangel, M. (1981). Three Bearing Method for Passive Triangulation in Systems with Unknown Deterministic Biases. IEEE Transactions on Aerospace and Electronic Systems, AES-17(6), 814–819. https://doi.org/10.1109/TAES.1981.309133
[17] Adamy, D. L. (2005). Emitter Location: Reporting Location Accuracy. The Journal of Electronic Defense, (7).
[18] Kelner, J. M., & Ziółkowski, C. (2020). Effectiveness of Mobile Emitter Location by Cooperative Swarm of Unmanned Aerial Vehicles in Various Environmental Conditions. Sensors, 20(9), 2575. https://doi.org/10.3390/s20092575
[19] Mahapatra, P. R. (1980). Emitter location independent of systematic errors in direction finders. IEEE Transactions on Aerospace and Electronic Systems, AES-16(6), 851–855. https://doi.org/10.1109/TAES.1980.309009
[20] Matuszewski, J., & Dikta, A. (2017, April). Emitter location errors in electronic recognition system. In XI Conference on Reconnaissance and Electronic Warfare Systems (Vol. 10418, p. 104180C). International Society for Optics and Photonics. https://doi.org/10.1117/12.2269295
[21] Stansfield, R. G. (1947). Statistical theory of DF fixing. Journal of the Institution of Electrical Engineers-Part IIIA: Radiocommunication, 94(14), 762–770. https://doi.org/10.1049/ji-3a-2.1947.0096
[22] Vakin, S. A., Shustov, L. N., Dunwell, R. H. (2001). Fundamentals of Electronic Warfare. Artech House.
[23] Bature, U. I., Tahir, N. M., Yakub, N. A., & Baba, M. A. (2020). Multi-baseline Emitter Location System: A Correlative Interferometer Approach. Nigerian Journal of Engineering, 27(2), 92–98.
[24] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[25] Tian, B., Huang, H., & Li, Y. (2009, September). Direction of arrival estimation using nonlinear function of sum and difference beam. In 2009 IEEE Youth Conference on Information, Computing and Telecommunication (pp. 311–314). IEEE. https://doi.org/10.1109/YCICT.2009.5382360
[26] Ghilani, C. D., &Wolf, P. R. (2007). Adjustment Computations: Spatial Data Analysis (4th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470121498
[27] Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 817–828. https://doi.org/10.1109/7.256302
[28] He, Y., Behnad, A., & Wang, X. (2015). Accuracy analysis of the two-reference-node angle-of-arrival localization system. IEEE Wireless Communications Letters, 4(3), 329–332. https://doi.org/10.1109/LWC.2015.2415788
[29] Kukes, I. S., Starik, M. Ye. (1964). Principles of Radio Direction Finding. Soviet Radio Publishing House. (in Russian)
[30] Paradowski, L. R. (1998, May). Microwave emitter position location: present and future. In 12th International Conference on Microwaves and Radar. MIKON-98. Conference Proceedings (IEEE Cat. No. 98EX195) (pp. 97–116). IEEE. https://doi.org/10.1109/MIKON.1998.738464
[31] Paradowski, L. R. (1997). Uncertainty ellipses and their application to interval estimation of emitter position. IEEE Transactions on Aerospace and Electronic Systems, 33(1), 126–133. https://doi.org/10.1109/7.570715
[32] Rui, L., & Ho, K. C. (2014). Elliptic localization: Performance study and optimum receiver placement. IEEE Transactions on Signal Processing, 62(18), 4673–4688. https://doi.org/10.1109/TSP.2014.2338835
[33] Shirman Ya. D. (Eds.). (1970). Theoretical fundamentals of radiolocation. Sovietskoe Radio. (in Russian)
[34] Tondwalkar, A. V., & Vinayakray-Jani, P. (2015, December). Terrestrial localization by using angle of arrival measurements in wireless sensor network. In 2015 International Conference on Computational Intelligence and CommunicationNetworks (CICN) (pp. 188–191). IEEE. https://doi.org/10.1109/CICN.2015.44
[35] Wang, Z., Luo, J. A.,&Zhang, X. P. (2012).Anovel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60(12), 6166–6181. https://doi.org/10.1109/TSP.2012.2218809
[36] Ziółkowski, C., & Kelner, J. M. (2015). The influence of propagation environment on the accuracy of emission source bearing. Metrology and Measurement Systems, 22(4), 591–600.
Go to article

Authors and Affiliations

Jan Matuszewski
1
Tomasz Kraszewski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, gen. S. Kaliskiego 2, 00–908 Warsaw, Poland

This page uses 'cookies'. Learn more